Abstract:
A control method for network communication system including base station network management server comprises of obtaining an item of neighbor base station identification information of a neighbor base station by a first base station; providing the first base station identification information to a base station network management server by the first base station; obtaining a first base station neighbor information from the base station network management server by a first MEC platform; producing an item of first platform neighbor information by the first MEC platform; determining whether a request signal matches the first platform neighbor information after receiving the request signal from a second MEC platform; providing the first platform identification information to the second MEC platform while determining that the request signal matches the first platform neighbor information.
Abstract:
A control method for network communication system comprises of obtaining an item of neighbor base station identification information of a neighbor base station by a first base station; obtaining a first base station neighbor information from the first base station by a first MEC platform; producing an item of first platform neighbor information by the first MEC platform; determining whether a request signal matches the first platform neighbor information after receiving the request signal from a second MEC platform; providing the first platform identification information to the second MEC platform while determining that the request signal matches the first platform neighbor information.
Abstract:
A network controlling method and a network controller are provided. The network controlling method includes the following steps. A hybrid SDN-Ethernet system including a plurality of hosts, a plurality of Ethernet switches and m Software-defined networking switches (SDN switches) is provided. m is larger than or equal to 1. A first path according to at least one default spanning tree in the hybrid SDN-Ethernet system is obtained. m×k optional paths are obtained. Each of the m SDN switches is set as a beginning of each of k of the m×k optional paths. A second path is selected according to the m×k optional paths and the first path of the at least one default spanning tree.
Abstract translation:提供网络控制方法和网络控制器。 网络控制方法包括以下步骤。 提供了包括多个主机,多个以太网交换机和m个软件定义的网络交换机(SDN交换机)的混合SDN-以太网系统。 m大于或等于1.获得了根据混合SDN-以太网系统中的至少一个默认生成树的第一路径。 获得m×k个可选路径。 m SDN开关中的每一个被设置为m×k个可选路径的k个的开始。 根据m×k个可选路径和该至少一个默认生成树的第一路径来选择第二路径。
Abstract:
An anti-counterfeit device with dynamic barcodes is disclosed. An anti-counterfeit system with dynamic barcodes provides an anti-counterfeit mechanism when a user uses an electronic value barcode. The anti-counterfeit device includes a barcode generator module, an anti-counterfeit generator module and a combination module. The barcode generator module generates electronic barcodes that can be read directly by a barcode reader. The anti-counterfeit generator module generates dynamic anti-counterfeit labels with dynamic exchange information varying in time. The combination module generates anti-counterfeit barcodes by combining the electronic barcodes and the dynamic anti-counterfeit labels. The dynamic anti-counterfeit labels are visible, and are used for enhancing the anti-counterfeit capability of the electronic barcodes. Moreover, the electronic barcode with the dynamic anti-counterfeit labels can be read directly and correctly by the barcode reader without illuminant interference. Therefore, whether the electronic barcodes are forged barcodes is determined by observing the dynamic changes of the dynamic anti-counterfeit labels.