Performance assurance using workload phase detection

    公开(公告)号:US10721137B2

    公开(公告)日:2020-07-21

    申请号:US15198300

    申请日:2016-06-30

    Abstract: Systems described herein operate to improve network performance in a multi-tenant cloud computing environment. Systems can include communication circuitry and processing circuitry to generate a phase sequence matrix that indicates the identity and number of phases of a workload by measuring resources of the compute node during execution of the workload throughout a lifetime of the workload. The processing circuitry can generate a workload fingerprint that includes the phase sequence matrix and a phrase residency matrix. The phase residency matrix can indicate the fraction of execution time of the workload spent in each phase identified in the phase sequence matrix. A cloud controller can access the workload fingerprint for multiple workloads operating on multiple compute nodes in the cloud cluster to adjust workload allocations based at least on these workload fingerprints and on whether service level objectives (SLOs) are being met.

    Cloud compute scheduling using a heuristic contention model

    公开(公告)号:US10659386B2

    公开(公告)日:2020-05-19

    申请号:US15872928

    申请日:2018-01-16

    Abstract: Technologies for contention-aware cloud compute scheduling include a number of compute nodes in a cloud computing cluster and a cloud controller. Each compute node collects performance data indicative of cache contention on the compute node, for example, cache misses per thousand instructions. Each compute node determines a contention score as a function of the performance data and stores the contention score in a cloud state database. In response to a request for a new virtual machine, the cloud controller receives contention scores for the compute nodes and selects a compute node based on the contention score. The cloud controller schedules the new virtual machine on the selected compute node. The contention score may include a contention metric and a contention score level indicative of the contention metric. The contention score level may be determined by comparing the contention metric to a number of thresholds. Other embodiments are described and claimed.

    Cloud compute scheduling using a heuristic contention model

    公开(公告)号:US09614779B2

    公开(公告)日:2017-04-04

    申请号:US14368349

    申请日:2013-12-24

    Abstract: Technologies for contention-aware cloud compute scheduling include a number of compute nodes in a cloud computing cluster and a cloud controller. Each compute node collects performance data indicative of cache contention on the compute node, for example, cache misses per thousand instructions. Each compute node determines a contention score as a function of the performance data and stores the contention score in a cloud state database. In response to a request for a new virtual machine, the cloud controller receives contention scores for the compute nodes and selects a compute node based on the contention score. The cloud controller schedules the new virtual machine on the selected compute node. The contention score may include a contention metric and a contention score level indicative of the contention metric. The contention score level may be determined by comparing the contention metric to a number of thresholds. Other embodiments are described and claimed.

    CLOUD COMPUTE SCHEDULING USING A HEURISTIC CONTENTION MODEL

    公开(公告)号:US20220368645A1

    公开(公告)日:2022-11-17

    申请号:US17562664

    申请日:2021-12-27

    Abstract: Technologies for contention-aware cloud compute scheduling include a number of compute nodes in a cloud computing cluster and a cloud controller. Each compute node collects performance data indicative of cache contention on the compute node, for example, cache misses per thousand instructions. Each compute node determines a contention score as a function of the performance data and stores the contention score in a cloud state database. In response to a request for a new virtual machine, the cloud controller receives contention scores for the compute nodes and selects a compute node based on the contention score. The cloud controller schedules the new virtual machine on the selected compute node. The contention score may include a contention metric and a contention score level indicative of the contention metric. The contention score level may be determined by comparing the contention metric to a number of thresholds. Other embodiments are described and claimed.

    Cloud compute scheduling using a heuristic contention model

    公开(公告)号:US11212235B2

    公开(公告)日:2021-12-28

    申请号:US16875597

    申请日:2020-05-15

    Abstract: Technologies for contention-aware cloud compute scheduling include a number of compute nodes in a cloud computing cluster and a cloud controller. Each compute node collects performance data indicative of cache contention on the compute node, for example, cache misses per thousand instructions. Each compute node determines a contention score as a function of the performance data and stores the contention score in a cloud state database. In response to a request for a new virtual machine, the cloud controller receives contention scores for the compute nodes and selects a compute node based on the contention score. The cloud controller schedules the new virtual machine on the selected compute node. The contention score may include a contention metric and a contention score level indicative of the contention metric. The contention score level may be determined by comparing the contention metric to a number of thresholds. Other embodiments are described and claimed.

    CLOUD COMPUTE SCHEDULING USING A HEURISTIC CONTENTION MODEL

    公开(公告)号:US20170237681A1

    公开(公告)日:2017-08-17

    申请号:US15388843

    申请日:2016-12-22

    Abstract: Technologies for contention-aware cloud compute scheduling include a number of compute nodes in a cloud computing cluster and a cloud controller. Each compute node collects performance data indicative of cache contention on the compute node, for example, cache misses per thousand instructions. Each compute node determines a contention score as a function of the performance data and stores the contention score in a cloud state database. In response to a request for a new virtual machine, the cloud controller receives contention scores for the compute nodes and selects a compute node based on the contention score. The cloud controller schedules the new virtual machine on the selected compute node. The contention score may include a contention metric and a contention score level indicative of the contention metric. The contention score level may be determined by comparing the contention metric to a number of thresholds. Other embodiments are described and claimed.

    Techniques for managing a distributed computing environment using event digests

    公开(公告)号:US10747640B2

    公开(公告)日:2020-08-18

    申请号:US15635270

    申请日:2017-06-28

    Abstract: Techniques and apparatus for managing a distributed computing environment using event digests are described. In one embodiment, for example, an apparatus may include at least one memory, and logic for a system manager, at least a portion of the logic comprised in hardware coupled to the at least one memory, the logic to determine a workload to schedule, access an event digest associated with a plurality of compute hosts, the event digest comprising event digest values determined using out-of-band information, determine metrics from the event digest, generate at least one host weight for at least a portion of the plurality of compute hosts based on the metrics, identify at least one candidate host from the portion of the plurality of compute hosts based on the at least one host weight, and schedule the workload on the at least one candidate host. Other embodiments are described and claimed.

    TECHNOLOGIES FOR IN-PROCESSOR WORKLOAD PHASE DETECTION

    公开(公告)号:US20190065261A1

    公开(公告)日:2019-02-28

    申请号:US15859366

    申请日:2017-12-30

    Abstract: Technologies for providing in-processor workload phase detection include a sled having a compute engine, which itself includes a performance monitor unit. The compute engine obtains telemetry data from the performance monitor unit. The performance monitor unit produces telemetry data indicative of performance metrics of the sled during execution of one or more workloads. The telemetry data is indicative of a resource utilization and workload performance by the sled as the workloads are executed. The compute engine determines, from a lookup table indicative of resource utilization phases, a resource utilization phase based on the obtained telemetry data. A workload fingerprint is updated based on the determined resource utilization phase, and the workload fingerprint is output. Other embodiments are also described and claimed.

Patent Agency Ranking