Abstract:
Apparatuses and methods for managing display content across overlapping devices are disclosed. A display connected to or part of a first device may be at least partially occluded by a second device. In the disclosed embodiments, the first device detects the position and orientation of the second device relative to the display, determines a portion of the display that is occluded by the second device, and manages the content of the display and/or a display connected to the second device to accommodate the occluded portion. In some embodiments, the content is managed with respect to the context of the content displayed on the displays connected to the first and second devices.
Abstract:
A mechanism is described to facilitate dynamic selection of avatars according to one embodiment. A method of embodiments, as described herein, includes acquiring user attributes, analyzing the user attributes and facilitating selection of an avatar based on the user attributes.
Abstract:
A mechanism is described for facilitating dynamic rendering of non-visual marker-based augmented reality experiences on computing devices according to one embodiment. A method of embodiments, as described herein, includes detecting non-visual data. The non-visual data may be captured via one or more capturing/sensing components of a computing device. The method may further include mapping the non-visual data with one or more augmented reality items to generate a first augmented reality experience, wherein the non-visual data is converted into one or more non-visual markers based on the one or more augmented reality items and one or more contexts, and rendering the first augmented reality experience based on the one or more non-visual markers.
Abstract:
A mechanism is described for dynamically facilitating tracking of targets and generating and communicating of messages at computing devices according to one embodiment. An apparatus of embodiments, as described herein, includes one or more capturing/sensing components to facilitate seeking of the apparatus, where the apparatus is associated with a user, and recognition/transformation logic to recognize the apparatus. The apparatus may further include command and data analysis logic to analyze a command received at the apparatus from the user, where the command indicates sending a message to the apparatus. The apparatus may further include message generation and preparation logic to generate the message based on the analysis of the command, and communication/compatibility logic to communicate the message.
Abstract:
Autonomous vehicles leave passengers with time to perform activities while awaiting travel to conclude. While one might engage in reading, playing games, or conversing with others, it is expected another common activity will be to sleep. Disclosed are various examples of how to coordinate a traffic control system with home and vehicle environments to enable allowing a person to be able to sleep while traveling, where travel is in accord with personal preferences, and constraints, such as schedule or systemic constraints (e.g., traffic). It will be appreciated passengers may be transferred to their vehicle while still asleep, or monitored to determine a time to awaken the passenger for transfer to the vehicle such that the passenger is more likely to be able to return to sleep for the travel.
Abstract:
Examples include a determination how to manage storage of a video clip generated from recorded video based upon a sensor event. Managing storage of the video clip may include determining whether to save or delete the video clip based on an imprint associated with an object that indicates whether the object is included in the video clip.