Abstract:
A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
Abstract:
A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
Abstract:
Receiving an instruction indicating a source operand and a destination operand. Storing a result in the destination operand in response to the instruction. The result operand may have: (1) first range of bits having a first end explicitly specified by the instruction in which each bit is identical in value to a bit of the source operand in a corresponding position; and (2) second range of bits that all have a same value regardless of values of bits of the source operand in corresponding positions. Execution of instruction may complete without moving the first range of the result relative to the bits of identical value in the corresponding positions of the source operand, regardless of the location of the first range of bits in the result. Execution units to execute such instructions, computer systems having processors to execute such instructions, and machine-readable medium storing such an instruction are also disclosed.
Abstract:
Receiving an instruction indicating a source operand and a destination operand. Storing a result in the destination operand in response to the instruction. The result operand may have: (1) first range of bits having a first end explicitly specified by the instruction in which each bit is identical in value to a bit of the source operand in a corresponding position; and (2) second range of bits that all have a same value regardless of values of bits of the source operand in corresponding positions. Execution of instruction may complete without moving the first range of the result relative to the bits of identical value in the corresponding positions of the source operand, regardless of the location of the first range of bits in the result. Execution units to execute such instructions, computer systems having processors to execute such instructions, and machine-readable medium storing such an instruction are also disclosed.
Abstract:
Receiving an instruction indicating a source operand and a destination operand. Storing a result in the destination operand in response to the instruction. The result operand may have: (1) first range of bits having a first end explicitly specified by the instruction in which each bit is identical in value to a bit of the source operand in a corresponding position; and (2) second range of bits that all have a same value regardless of values of bits of the source operand in corresponding positions. Execution of instruction may complete without moving the first range of the result relative to the bits of identical value in the corresponding positions of the source operand, regardless of the location of the first range of bits in the result. Execution units to execute such instructions, computer systems having processors to execute such instructions, and machine-readable medium storing such an instruction are also disclosed.
Abstract:
Receiving an instruction indicating a source operand and a destination operand. Storing a result in the destination operand in response to the instruction. The result operand may have: (1) first range of bits having a first end explicitly specified by the instruction in which each bit is identical in value to a bit of the source operand in a corresponding position; and (2) second range of bits that all have a same value regardless of values of bits of the source operand in corresponding positions. Execution of instruction may complete without moving the first range of the result relative to the bits of identical value in the corresponding positions of the source operand, regardless of the location of the first range of bits in the result. Execution units to execute such instructions, computer systems having processors to execute such instructions, and machine-readable medium storing such an instruction are also disclosed.
Abstract:
Methods and apparatus are disclosed for fusing instructions to provide OR-test and AND-test functionality on multiple test sources. Some embodiments include fetching instructions, said instructions including a first instruction specifying a first operand destination, a second instruction specifying a second operand source, and a third instruction specifying a branch condition. A portion of the plurality of instructions are fused into a single micro-operation, the portion including both the first and second instructions if said first operand destination and said second operand source are the same, and said branch condition is dependent upon the second instruction. Some embodiments generate a novel test instruction dynamically by fusing one logical instruction with a prior-art test instruction. Other embodiments generate the novel test instruction through a just-in-time compiler. Some embodiments also fuse the novel test instruction with a subsequent conditional branch instruction, and perform a branch according to how the condition flag is set.
Abstract:
A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
Abstract:
A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
Abstract:
Receiving an instruction indicating a source operand and a destination operand. Storing a result in the destination operand in response to the instruction. The result operand may have: (1) first range of bits having a first end explicitly specified by the instruction in which each bit is identical in value to a bit of the source operand in a corresponding position; and (2) second range of bits that all have a same value regardless of values of bits of the source operand in corresponding positions. Execution of instruction may complete without moving the first range of the result relative to the bits of identical value in the corresponding positions of the source operand, regardless of the location of the first range of bits in the result. Execution units to execute such instructions, computer systems having processors to execute such instructions, and machine-readable medium storing such an instruction are also disclosed.