Abstract:
Techniques are disclosed for integrating capacitors among the metal interconnect for embedded DRAM applications. In some embodiments, the technique uses a wet etch to completely remove the interconnect metal (e.g., copper) that is exposed prior to the capacitor formation. This interconnect metal removal precludes that metal from contaminating the hi-k dielectric of the capacitor. Another benefit is increased height (surface area) of the capacitor, which allows for increased charge storage. In one example embodiment, an integrated circuit device is provided that includes a substrate having at least a portion of a DRAM bit cell circuitry, an interconnect layer on the substrate and including one or more metal-containing interconnect features, and a capacitor at least partly in the interconnect layer and occupying space from which a metal-containing interconnect feature was removed. The integrated circuit device can be, for example, a processor or a communications device.
Abstract:
Techniques are disclosed for improving gate control over the channel of a transistor, by increasing the effective electrical gate length (Leff) through deposition of a gate control layer (GCL) at the interfaces of the channel with the source and drain regions. The GCL is a nominally undoped layer (or substantially lower doped layer, relative to the heavily doped S/D fill material) that can be deposited when forming a transistor using replacement S/D deposition. The GCL can be selectively deposited in the S/D cavities after such cavities have been formed and before the heavily doped S/D fill material is deposited. In this manner, the GCL decreases the source and drain underlap (Xud) with the gate stack and further separates the heavily doped source and drain regions. This, in turn, increases the effective electrical gate length (Leff) and improves the control that the gate has over the channel.