Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wide-bandwidth data frame. For example, an apparatus may include a controller to generate at least one wide-bandwidth data frame to be transmitted over a wide-bandwidth millimeter-Wave (mmWave) channel, the wide-bandwidth mmWave channel including a plurality of mmWave channels; and a transmitter to transmit a plurality of reservation frames over the plurality of mmWave channels, a reservation frame of the plurality of reservation frames including a duration value corresponding to a duration of the wide-bandwidth data frame and a wide-bandwidth indication to indicate that the wide-bandwidth data frames are to be transmitted over the wide-bandwidth mmWave channel, the transmitter to transmit the at least one wide-bandwidth data frame over the wide-bandwidth mmWave channel.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of beamforming. For example, a first station may be configured to transmit to a second station a plurality of sector sweep (SSW) frames of a first beamforming transmission of a beamforming procedure, a SSW frame of the first beamforming transmission including a duration value to indicate a time until at least a beginning of a second beamforming transmission subsequent to the first beamforming transmission; and to receive from the second station one or more SSW frames of the second beamforming transmission.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of beamforming. For example, a first station may be configured to transmit to a second station a plurality of sector sweep (SSW) frames of a first beamforming transmission of a beamforming procedure, a SSW frame of the first beamforming transmission including a duration value to indicate a time until at least a beginning of a second beamforming transmission subsequent to the first beamforming transmission; and to receive from the second station one or more SSW frames of the second beamforming transmission.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of beamforming. For example, a first station may be configured to transmit to a second station a plurality of sector sweep (SSW) frames of a first beamforming transmission of a beamforming procedure, a SSW frame of the first beamforming transmission including a duration value to indicate a time until at least a beginning of a second beamforming transmission subsequent to the first beamforming transmission; and to receive from the second station one or more SSW frames of the second beamforming transmission.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless communication beamforming. For example, an apparatus may include a wireless communication unit to process a beamforming frame communicated between a beamforming initiator station and a beamforming responder station subsequent to a Transmit (Tx) sector sweep by the beamforming initiator station, wherein transmission of the beamforming frame is from a first station of the beamforming initiator station or the beamforming responder station to a second station of the beamforming initiator station or the beamforming responder station, the beamforming frame comprises an indication of a selected Tx sector, based on the Tx sector sweep, to be used by the first station for transmitting a directional beamformed transmission to the second station.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of wireless communication. For example, a wireless communication unit may include a Multi Media-Access-Control (MAC) Address Station-Management-Entity (MM-SME) managing a plurality of MAC entities having a respective plurality of MAC addresses. The wireless communication unit may transmit a frame including a Multi-MAC-Addresses-Element (MMAE), which includes two or more MAC addresses of the plurality of MAC addresses and a control field defining at least one common communication attribute to be applied to the two or more MAC addresses.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wide-bandwidth data frame. For example, an apparatus may include a controller to generate at least one wide-bandwidth data frame to be transmitted over a wide-bandwidth millimeter-Wave (mmWave) channel, the wide-bandwidth mmWave channel including a plurality of mmWave channels; and a transmitter to transmit a plurality of reservation frames over the plurality of mmWave channels, a reservation frame of the plurality of reservation frames including a duration value corresponding to a duration of the wide-bandwidth data frame and a wide-bandwidth indication to indicate that the wide-bandwidth data frames are to be transmitted over the wide-bandwidth mmWave channel, the transmitter to transmit the at least one wide-bandwidth data frame over the wide-bandwidth mmWave channel.
Abstract:
Embodiments of a millimeter-wave communication station and method for multiple-access beamforming in a millimeter-wave network are generally described herein. In some embodiments, an initiating station performs multiple-access beamforming with one or more responding stations by announcing a number of sector-sweep (SS) slots of a beamforming training (BFT) period and a number of SS frames of each SS slot. One or more SS frames are received from one or more of the responding stations within one of the SS slots of the BFT period. The initiating station transmits one or more SS feedback frames to the responding stations within the one SS slot to indicate an antenna configuration to the responding stations for communication with the initiating station. The responding stations transmit a limited number of SS frames per SS slot based on the number of SS frames announced by the initiating station and transmit any additional SS frames in a next SS slot of the beamforming training period. Each SS frame contains an indication to the initiating station of an antenna configuration for communication with the responding station.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wide-bandwidth data frame. For example, an apparatus may include a controller to generate at least one wide-bandwidth data frame to be transmitted over a wide-bandwidth millimeter-Wave (mmWave) channel, the wide-bandwidth mmWave channel including a plurality of mmWave channels; and a transmitter to transmit a plurality of reservation frames over the plurality of mmWave channels, a reservation frame of the plurality of reservation frames including a duration value corresponding to a duration of the wide-bandwidth data frame and a wide-bandwidth indication to indicate that the wide-bandwidth data frames are to be transmitted over the wide-bandwidth mmWave channel, the transmitter to transmit the at least one wide-bandwidth data frame over the wide-bandwidth mmWave channel.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of wireless communication. For example, a wireless communication unit may include a Multi Media-Access-Control (MAC) Address Station-Management-Entity (MM-SME) managing a plurality of MAC entities having a respective plurality of MAC addresses. The wireless communication unit may transmit a frame including a Multi-MAC-Addresses-Element (MMAE), which includes two or more MAC addresses of the plurality of MAC addresses and a control field defining at least one common communication attribute to be applied to the two or more MAC addresses.