Abstract:
A method and apparatus for coordinating communications between a Bluetooth system and a WiFi system in a device. Requests for airtime are collected from the Bluetooth system and the WiFi system. A local slot availability mask is prepared showing time slots allocated to the Bluetooth system. The local slot availability mask is forwarded to the WiFi system so that the WiFi system may avoid sending and receiving WiFi wireless communications during time slots allocated for Bluetooth system use. The WiFi system may override the Bluetooth allocation when needed. Changes in priority of the Bluetooth communications and of the WiFi communications result in changes in allocation of time slots.
Abstract:
Described herein are technologies related to an implementation of interference mitigation in a receiver of a portable device. A preemptive-automatic gain control (AGC) system mitigates a collocated or external interfering signal in a receiver of a portable device. The receiver of the portable device receives and processes a data packet of a first radio frequency (RF) signal that includes a Bluetooth (BT) signal, a Wi-Fi signal, a near field communications (NFC), 3G, 4G, or the like. During the processing of the data packet, a collocated or an external second RF signal is detected and received by the receiver. The second RF signal includes an interfering Bluetooth (BT) uplink transmission, a near field communications (NFC) transmission signal, a Wi-Fi transmission signal, 3G or 4G uplink transmission, an LTE signal, or the like.
Abstract:
An electronic device includes one or more integrated circuits, a debugging translation block, and a bus connected to the one or more integrated circuits and the debugging translation block, the bus configured to provide a connection to one or more external devices, wherein the debugging translation block is configured to receive debugging commands from a testing host device via the bus, convert the debugging commands into debugging input data, and provide the debugging input data to a debugging state machine of a first integrated circuit of the one or more integrated circuits.
Abstract:
Techniques for employing channel inhibition (CI) with adaptive frequency hopping (AFH) in connection with Bluetooth (BT) are discussed. One example system employing such techniques comprises a BT master component operating on a plurality of channels via AFH; and a processor configured to: assign, based on a set of criteria, a first (e.g., ‘UNUSED’) status and a priority level to one or more channels, and a second (e.g., ‘USED’) status to each other channel; determine whether a total number of channels set as ‘USED’ is less than a minimum number of required channels; and in response to a determination that the total number of channels set as ‘USED’ is less than the minimum number, repeatedly assign a ‘USED’ status to a channel having a lowest priority level among channels with the ‘UNUSED’ status, until the total number of channels set as ‘USED’ equals the minimum number.
Abstract:
Described herein are technologies related to an implementation of interference mitigation in a receiver of a portable device. A preemptive-automatic gain control (AGC) system mitigates a collocated or external interfering signal in a receiver of a portable device. The receiver of the portable device receives and processes a data packet of a first radio frequency (RF) signal that includes a Bluetooth (BT) signal, a Wi-Fi signal, a near field communications (NFC), 3G, 4G, or the like. During the processing of the data packet, a collocated or an external second RF signal is detected and received by the receiver. The second RF signal includes an interfering Bluetooth (BT) uplink transmission, a near field communications (NFC) transmission signal, a Wi-Fi transmission signal, 3G or 4G uplink transmission, an LTE signal, or the like.
Abstract:
Described herein are methods, architectures and platforms for adjusting a reception range at which remote devices transmit to a Bluetooth receiver, by determining wireless radio interference to the Bluetooth receiver. The reception range is adjusted per the wireless radio interference.
Abstract:
Methods, devices and systems for dynamic scheduling of Bluetooth signals based at least in part on LTE schedules are disclosed. In some examples, Bluetooth can deduce information on the LTE DL/UL activity based at least in part on the LTE frame structure, LTE decision point or the LTE subframe boundary time. In some examples, Bluetooth scheduler can dynamically change the timing of the scheduling algorithm such that it may utilize the knowledge of LTE traffic and may at least partially avoid interference or evaluate the interference level.
Abstract:
An electronic device includes one or more integrated circuits, a debugging translation block, and a bus connected to the one or more integrated circuits and the debugging translation block, the bus configured to provide a connection to one or more external devices, wherein the debugging translation block is configured to receive debugging commands from a testing host device via the bus, convert the debugging commands into debugging input data, and provide the debugging input data to a debugging state machine of a first integrated circuit of the one or more integrated circuits.
Abstract:
A mobile device may include a Short Range radio communication subsystem and a Cellular Wide Area radio communication subsystem. The Short Range radio communication master subsystem may include a processing circuit configured to identify a first plurality of channels, assign a blocking priority to one or more of the first plurality of channels, identify a second plurality of channels occupied by the Cellular Wide Area radio communication subsystem, and select a third plurality of channels from the first plurality of channels based on the blocking priority of the first plurality of channels and the frequency distance between each of the first plurality of channels and each of the second plurality of channels, and a radio transceiver configured to apply the third plurality of channels to transmit or receive data on a Short Range radio communication network.
Abstract:
Described herein are methods, architectures and platforms for adjusting a reception range at which remote devices transmit to a Bluetooth receiver, by determining wireless radio interference to the Bluetooth receiver. The reception range is adjusted per the wireless radio interference.