Abstract:
Techniques for 60 GHz long term evolution (LTE)—wireless local area network (WLAN) aggregation (LWA) for keeping a 60 GHz channel alive for fifth generation (5G) and beyond are discussed herein. An apparatus of a 5G/long term evolution (LTE) evolved NodeB (eNB) is connected to a 60 GHz access point (AP) via an Xw interface, and has a baseband circuit with one or more baseband processors. The baseband circuit encodes one or more measurement events, wherein upon receipt by a user equipment (UE) sets a trigger to measure a 60 GHz access point.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of selecting a wireless communication channel to communicate in a wireless communication network. For example, a wireless communication device may include a channel selector to determine a plurality of channel grades of a respective plurality of potential wireless communication channels, the channel selector to determine a channel grade of the plurality of channel grades according to a weighted function of a plurality of channel assessment parameters corresponding to a potential wireless communication channel of the plurality of potential wireless communication channels, wherein the channel selector is to select, based on the plurality of channel grades, a selected wireless communication channel from the plurality of potential wireless communication channels; and a radio to communicate over the selected wireless communication channel.
Abstract:
Uplink (UL) data splits between LTE and WLAN can be go supported in cellular networks. The split can be UE controlled or network controlled. Both UE and network controlled bearer split architectures can be supported. The reporting of Uplink Buffer Status (BSR) and the subsequent data allocation can depend on what option is supported by the network. For UE controlled UL data splits, the UE determines a traffic split ratio between LTE and WLAN. The split can be based on local link conditions. For network controlled UL data splits, the network (e.g. a Link Aggregation Scheduler at the eNB) is responsible for making bearer split decisions. The decisions can be based on link qualities, available traffic and quality of service (QoS) requirements of associated users. The split can be based on a per bearer threshold, an eNB configured ratio, or an implicit inference based on a UL grant.
Abstract:
Techniques for employing channel inhibition (CI) with adaptive frequency hopping (AFH) in connection with Bluetooth (BT) are discussed. One example system employing such techniques comprises a BT master component operating on a plurality of channels via AFH; and a processor configured to: assign, based on a set of criteria, a first (e.g., ‘UNUSED’) status and a priority level to one or more channels, and a second (e.g., ‘USED’) status to each other channel; determine whether a total number of channels set as ‘USED’ is less than a minimum number of required channels; and in response to a determination that the total number of channels set as ‘USED’ is less than the minimum number, repeatedly assign a ‘USED’ status to a channel having a lowest priority level among channels with the ‘UNUSED’ status, until the total number of channels set as ‘USED’ equals the minimum number.
Abstract:
Some demonstrative embodiments include devices, systems and methods of communication by co-located wireless communication modules. For example, a device may be configured to receive a latency attribute indicating an allowed latency to transmit a packet using one or more shared resources shared between a plurality of wireless communication modules; receive a first priority level indicating a first transmission priority of the packet; increase the first priority level to a second priority level based on a comparison between the allowed latency and a time from reception of the latency attribute; and send the second priority level to an arbitration module, the second priority level to indicate to the arbitration module a second transmission priority to transmit the packet using the shared resources.
Abstract:
An apparatus of a base station includes a memory device and processing circuitry operatively coupled to the memory device. The processing circuitry processes a buffer status report (BSR) from a user equipment (UE) indicating an amount of data in a buffer of the UE. The processing circuitry further determines a ratio of WLAN uplink data to be transmitted on a WLAN channel of the UE to long term evolution (LTE) uplink data to be transmitted on a LTE channel. Furthermore, the processing circuitry encodes a protocol data unit (PDU) indicating the amount, wherein the PDU is to be transmitted to the UE.
Abstract:
Some demonstrative embodiments include devices, systems and methods of communication by co-located wireless communication modules. For example, a device may be configured to receive a latency attribute indicating an allowed latency to transmit a packet using one or more shared resources shared between a plurality of wireless communication modules; receive a first priority level indicating a first transmission priority of the packet; increase the first priority level to a second priority level based on a comparison between the allowed latency and a time from reception of the latency attribute; and send the second priority level to an arbitration module, the second priority level to indicate to the arbitration module a second transmission priority to transmit the packet using the shared resources.
Abstract:
Techniques for 60 GHz long term evolution (LTE)-wireless local area network (WLAN) aggregation (LWA) for keeping a 60 GHz channel alive for fifth generation (5G) and beyond are discussed herein. An apparatus of a 5G/long term evolution (LTE) evolved NodeB (eNB) is connected to a 60 GHz access point (AP) via an Xw interface, and has a baseband circuit with one or more baseband processors. The baseband circuit encodes one or more measurement events, wherein upon receipt by a user equipment (UE) sets a trigger to measure a 60 GHz access point.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of cellular-assisted Wireless Local Area Network (WLAN) regulatory information. For example, a User Equipment (UE) may include a WLAN transceiver; a cellular transceiver to receive from an Evolved Node B (eNB) a cellular message including regulatory information indicating one or more regulatory restrictions corresponding to WLAN communications over at least one WLAN frequency band, the regulatory information including at least an indication on whether or not WLAN active scanning is allowed over the WLAN frequency band; and a controller component configured to, based on the regulatory information, enable or disable the WLAN transceiver to perform a WLAN active scan over the WLAN frequency band.
Abstract:
Techniques for employing channel inhibition (CI) with adaptive frequency hopping (AFH) in connection with Bluetooth (BT) are discussed. One example system employing such techniques comprises a BT master component operating on a plurality of channels via AFH; and a processor configured to: assign, based on a set of criteria, a first (e.g., ‘UNUSED’) status and a priority level to one or more channels, and a second (e.g., ‘USED’) status to each other channel; determine whether a total number of channels set as ‘USED’ is less than a minimum number of required channels; and in response to a determination that the total number of channels set as ‘USED’ is less than the minimum number, repeatedly assign a ‘USED’ status to a channel having a lowest priority level among channels with the ‘UNUSED’ status, until the total number of channels set as ‘USED’ equals the minimum number.