Abstract:
A method for WTRU autonomous resource selection may comprise receiving a TX resource pool for D2D communication from a base station. The WTRU may sense one or more resources of the TX resource pool and determine resources for transmission of control information and D2D data, based on the sensing. The WTRU may then transmit, to another WTRU, the control information and the D2D data on the determined resources.
Abstract:
Systems, methods, and instrumentalities are provided to implement scheduling for device-to-device (D2D). A WTRU (e.g., a D2D WTRU) may determine whether the WTRU has D2D data to transmit. The WTRU may determine a set of allowed SA resources and/or allowed D2D data resources for transmission of the SA. The WTRU may select an SA resource and/or D2D data resources (e.g., from the set of allowed SA resources and/or D2D data resources) for transmission. The WTRU may select one or more transmission parameters. The WTRU may select one or more transmission patterns. The WTRU may transmit D2D data over the set of allowed D2D resources using the selected transmission patterns and according to the selected transmission parameters.
Abstract:
Methods and apparatus for performing device-to-device (D2D) discovery are described. A service discovery process may include a discoverable device (e.g., a wireless transmit/receive unit (WTRU)) sending a discovery request, over a wireless connection, for a radio resource for the purpose of performing a transmission for radio frequency (RF) proximity detection for a given service. The WTRU may receive a discovery response including a configuration for RF proximity detection from a network, which configuration may be associated to the service. The configuration for RF proximity may be received by dedicated signaling, (e.g., physical downlink shared channel (PDSCH)), in particular for a discoverable WTRU. The configuration for RF proximity may be received on a broadcast channel, (e.g., a discovery shared channel (DISCH)), in particular for a monitoring WTRU, and may include one or more service identities, each associated with an RF proximity detection configuration, or a validity information and a measurement configuration.
Abstract:
Physical layer processing and procedures for device-to-device (D2D) discovery signal generation and transmission and scheduling of D2D discovery signals are described. Detection and measurement of a D2D discovery signal, D2D signal identity management, and monitoring by a wireless transmit/receive unit (WTRU) of PDCCH for D2D discovery scheduling is described, as is a WTRU that may be configured with a D2D-specific transmission/reception opportunity pattern. The discovery signal may carry a payload for explicit information about user and/or service identity, and may be mapped to physical resources in such a way as to decouple transmission/reception of the discovery signal from downlink operations. A WTRU may measure a D2D discovery signal quality and report to the network.
Abstract:
Device-to-device (D2D) cross link power control systems and methods may be disclosed. For example, a device such as a UE or WTRU may determine whether it may have simultaneous transmissions where at least one of the transmissions may include a cross link transmission. The device may further determine whether a total transmit power of the simultaneous transmissions may exceed a maximum transmit power of the device. If the device may have simultaneous transmissions and such transmissions may exceed the maximum transmit power, the device may reallocate power based on a priority or priority setting. The device may further determine a maximum cross link power, a maximum device power, and a cross link transmit power level such that the device may further control the power for transmissions based thereon.
Abstract:
Device-to-device (D2D) cross link power control systems and methods may be disclosed. For example, a device such as a UE or WTRU may determine whether it may have simultaneous transmissions where at least one of the transmissions may include a cross link transmission. The device may further determine whether a total transmit power of the simultaneous transmissions may exceed a maximum transmit power of the device. If the device may have simultaneous transmissions and such transmissions may exceed the maximum transmit power, the device may reallocate power based on a priority or priority setting. The device may further determine a maximum cross link power, a maximum device power, and a cross link transmit power level such that the device may further control the power for transmissions based thereon.
Abstract:
Systems, methods, and instrumentalities are provided to implement scheduling for device-to-device (D2D). A WTRU (e.g., a D2D WTRU) may determine whether the WTRU has D2D data to transmit. The WTRU may determine a set of allowed SA resources and/or allowed D2D data resources for transmission of the SA. The WTRU may select an SA resource and/or D2D data resources (e.g., from the set of allowed SA resources and/or D2D data resources) for transmission. The WTRU may select one or more transmission parameters. The WTRU may select one or more transmission patterns. The WTRU may transmit D2D data over the set of allowed D2D resources using the selected transmission patterns and according to the selected transmission parameters.
Abstract:
Physical layer processing and procedures for device-to-device (D2D) discovery signal generation and transmission and scheduling of D2D discovery signals are described. Detection and measurement of a D2D discovery signal, D2D signal identity management, and monitoring by a wireless transmit/receive unit (WTRU) of PDCCH for D2D discovery scheduling is described, as is a WTRU that may be configured with a D2D-specific transmission/reception opportunity pattern. The discovery signal may carry a payload for explicit information about user and/or service identity, and may be mapped to physical resources in such a way as to decouple transmission/reception of the discovery signal from downlink operations. A WTRU may measure a D2D discovery signal quality and report to the network.
Abstract:
Methods and apparatus for performing device-to-device (D2D) discovery are described. A service discovery process may include a discoverable device (e.g., a wireless transmit/receive unit (WTRU)) sending a discovery request, over a wireless connection, for a radio resource for the purpose of performing a transmission for radio frequency (RF) proximity detection for a given service. The WTRU may receive a discovery response including a configuration for RF proximity detection from a network, which configuration may be associated to the service. The configuration for RF proximity may be received by dedicated signaling, (e.g., physical downlink shared channel (PDSCH)), in particular for a discoverable WTRU. The configuration for RF proximity may be received on a broadcast channel, (e.g., a discovery shared channel (DISCH)), in particular for a monitoring WTRU, and may include one or more service identities, each associated with an RF proximity detection configuration, or a validity information and a measurement configuration.
Abstract:
Methods and apparatus for performing device-to-device (D2D) discovery are described. A service discovery process may include a discoverable device (e.g., a wireless transmit/receive unit (WTRU)) sending a discovery request, over a wireless connection, for a radio resource for the purpose of performing a transmission for radio frequency (RF) proximity detection for a given service. The WTRU may receive a discovery response including a configuration for RF proximity detection from a network, which configuration may be associated to the service. The configuration for RF proximity may be received by dedicated signaling, (e.g., physical downlink shared channel (PDSCH)), in particular for a discoverable WTRU. The configuration for RF proximity may be received on a broadcast channel, (e.g., a discovery shared channel (DISCH)), in particular for a monitoring WTRU, and may include one or more service identities, each associated with an RF proximity detection configuration, or a validity information and a measurement configuration.