Abstract:
Embodiments provide a computer implemented method, in a data processing system including a processor and a memory including instructions which are executed by the processor to cause the processor to train an enhanced chatflow system, the method including: ingesting a corpus of information including at least one user input node corresponding to a user question and at least one variation for each user input node; for each user input node: designating the node as a class; storing the node in a dialog node repository; designating each of the at least one variations as training examples for the designated class; converting the classes and the training examples into feature vector representations; training one or more training classifiers using the one or more feature vector representations of the classes; and training classification objectives using the one or more feature vector representations of the training examples.
Abstract:
Generating recommendations for an individual based on a mood of the individual. Receiving information corresponding to one or more activities associated with an individual over a period of time. The received information corresponding to the one or more activities associated with the individual is processed to detect a mood of the individual. A recommendation is generated for the individual based on the detected mood of the individual and a future event associated with the individual. The future event has an occurrence at a later time instance.
Abstract:
Systems and methods for maintaining speaker recognition performance are provided. A method for maintaining speaker recognition performance, comprises training a plurality of models respectively corresponding to speaker recognition scores from a plurality of speakers over a plurality of sessions, and using the plurality of models to conclude whether a speaker seeking access to an environment is a non-ideal target speaker or a non-ideal non-target speaker. Using the plurality of models to conclude comprises calculating a first probability that the speaker seeking access is the non-ideal target speaker, calculating a second probability that the speaker seeking access is the non-ideal non-target speaker, and determining whether the first probability, the second probability or a sum of the first probability and the second probability is above a probability threshold.
Abstract:
Deep scattering spectral features are extracted from an acoustic input signal to generate a deep scattering spectral feature representation of the acoustic input signal. The deep scattering spectral feature representation is input to a speech recognition engine. The acoustic input signal is decoded based on at least a portion of the deep scattering spectral feature representation input to a speech recognition engine.
Abstract:
Generating recommendations for an individual based on a mood of the individual. Receiving information corresponding to one or more activities associated with an individual over a period of time. The received information corresponding to the one or more activities associated with the individual is processed to detect a mood of the individual. A recommendation is generated for the individual based on the detected mood of the individual and a future event associated with the individual. The future event has an occurrence at a later time instance.
Abstract:
A computer retrieves profile information of a participant of a multi-party communication. The computer identifies an original jargon included in the multi-party communication based, at least in part, on the profile information. The computer generates a translated jargon by translating the original translated jargon, wherein the translated jargon can be understood by the participant of the multi-party communication. The computer sends the translated jargon to the participant of the multi-party communication.
Abstract:
A method for providing a voice application includes executing control flow logic modeling a dialog flow with a user via a voice browser. The control flow logic produces a disambiguation requirement. A disambiguation module is initiated and a set of at least two candidates and partitioning criteria is sent from the control flow logic to the module. Attributes of the candidates are analyzed to determine a partitioning score for each attribute indicative of ability to distinguish between candidates based on the partitioning criteria. The attributes are sorted based on the partitioning scores. The user is queried based on a top-sorted attribute and results of the query are used to reduce the set of candidates. The steps of analyzing, sorting, and querying are repeated until the set of candidates is reduced to a single candidate. The single candidate is returned to the control flow logic for continued execution.
Abstract:
A method, apparatus and computer program product for presenting a user interface for a conversational system is described. A unified contextual graph for use by the conversational system, the unified contextual graph comprising components based on database queries of the conversational system and a user dialog between a user and the conversational system. For each of a set of user utterances produced in a dialog with the conversational system, a semantic meaning representation is determined. The semantic meaning representations are converted to respective sentential concept graphs. The unified contextual graph is updated based on new sentential concept graphs while the dialog with the conversational system progresses.
Abstract:
A method, apparatus and computer program product for presenting a user interface for a conversational system is described. A user input is received in a dialog between a user and the conversational system, the user input in a natural language. A domain trained semantic matcher is used to determine a set of entities and a user intent from the user input. One or more queries is generated to selected ones of a plurality of knowledge sources, the knowledge sources created from domain specific knowledge. The results from the one or more queries are ranked based on domain specific knowledge. A system response is presented in the dialog based on at least a highest ranked result from the plurality of knowledge sources.
Abstract:
A computer-implemented method, computer program product, and computer processing system are provided for generating inferences from a forest of predefined problem determination trees using a processor-based conversation platform. The method includes selecting a tree from among the forest of predefined problem determination trees, responsive to user utterances uttered during an inference generating session. The method further includes navigating the tree to allocate a relevant tree node to generate a problem diagnosis question or a problem resolution action by understanding the user utterances among common interaction patterns in problem diagnosis and problem resolution dialogs. The method also includes providing speech for uttering the problem diagnosis question or the problem resolution action to a user.