Abstract:
A mechanism is provided for reusing importance sampling for efficient cell failure rate estimation of process variations and other design considerations. First, the mechanism performs a search across circuit parameters to determine failures with respect to a set of performance variables. For a single failure region, the initial search may be a uniform sampling of the parameter space. Mixture importance sampling (MIS) efficiently may estimate the single failure region. The mechanism then finds a center of gravity for each metric and finds importance samples. Then, for each new origin corresponding to a process variation or other design consideration, the mechanism finds a suitable projection and recomputes new importance sampling (IS) ratios.
Abstract:
Simulating particle beam interactions includes identifying a set of n functions F1, F2, . . . , Fn corresponding to a plurality of different physical aspects of a particle beam, performing simulations of each Fi using a full physics model, selecting for each Fi a distribution function fi that models relevant behavior and reducing computation of the full physics model for each Fi by replacing Fi with a distribution function fi. The computation reduction includes comparing a set of simulations wherein each fi replaces its respective Fi to determine if relevant behavior is accurately modeled and selecting one of fi or Fi for each n, for a Monte Carlo simulation based on a runtime and accuracy criteria.
Abstract:
A system, method and computer program product for sorting Integrated Circuits (chips), particularly microprocessor chips, and particularly that predicts chip performance or power for sorting purposes. The system and method described herein uses a combination of performance-predicting parameters that are measured early in the process, and applies a unique method to project where the part, e.g., microprocessor IC, will eventually be sorted. Sorting includes classifying the IC product to a subset of a family of products with the product satisfying certain performance characteristics or specifications, in the early stages of manufacturing, e.g., before the end product is fully fabricated.
Abstract:
A mechanism is provided for reusing importance sampling for efficient cell failure rate estimation of process variations and other design considerations. First, the mechanism performs a search across circuit parameters to determine failures with respect to a set of performance variables. For a single failure region, the initial search may be a uniform sampling of the parameter space. Mixture importance sampling (MIS) efficiently may estimate the single failure region. The mechanism then finds a center of gravity for each metric and finds importance samples. Then, for each new origin corresponding to a process variation or other design consideration, the mechanism finds a suitable projection and recomputes new importance sampling (IS) ratios.
Abstract:
A method and system are provided. The method includes splitting, by a processor based on radiation beamlet contributions to neighboring voxels, at least one row in a voxel-beamlet matrix and corresponding elements of a target dose vector prior to, and in preparation for, a regression operation. The voxel-beamlet matrix has a row for each of a plurality of voxels in a three-dimensional patient volume and a column for each of a plurality of radiation beamlets. The target dose vector represents a desired energy amount for each of the plurality of voxels in the three-dimensional patient volume. The target dose vector corresponds voxel-by-voxel to rows in the voxel-beamlet matrix. The method further includes performing, by the processor, the regression operation on the voxel-beamlet matrix and target dose vector to obtain beamlet weights. The method also includes determining an actual radiation dosing scheme for a given patient based on the beamlet weights.
Abstract:
A method and system are provided. The method includes condensing, by a processor, an original voxel-beamlet matrix stored in a memory device into a reduced dataset for proton beam simulation and therapy. The original voxel-beamlet matrix has a row for each of a plurality of voxels in a three-dimensional patient volume and a column for each of a plurality of radiation beamlets. The condensing step includes determining protobeams to be extracted from the original voxel-beamlet matrix. The protobeams are columns (i) selected from the original voxel-beamlet matrix based on comparisons performed between the columns in the original voxel-beamlet matrix or (ii) created by combining at least some of the columns in the original voxel-beamlet matrix, in a matrix condensing process. The condensing step further includes extracting the protobeams from the original voxel-beamlet matrix. The condensing step also includes storing the protobeams as the reduced dataset in the memory device.
Abstract:
A slew-based effective capacitance (Ceff) is used to compute gate output slew during early synthesis of an integrated circuit design. A π model is constructed for the gate and reduced to two parameters which are used to compute a slew value for the model, given a slew definition. A capacitance coefficient is then calculated as a function of this slew value. The effective capacitance is the product of the coefficient and the total capacitance of the π model. The output slew of the gate may in turn be computed using the slew-based Ceff. The coefficient may be computed by iteratively solving an equation representing output voltage over time dependent on the first and second parameters, by directly solving a closed-form equation which is a function of the first and second parameters, or by looking up the capacitance coefficient in a table indexed by the first and second parameters.
Abstract:
A mechanism is provided for reusing importance sampling for efficient cell failure rate estimation of process variations and other design considerations. First, the mechanism performs a search across circuit parameters to determine failures with respect to a set of performance variables. For a single failure region, the initial search may be a uniform sampling of the parameter space. Mixture importance sampling (MIS) efficiently may estimate the single failure region. The mechanism then finds a center of gravity for each metric and finds importance samples. Then, for each new origin corresponding to a process variation or other design consideration, the mechanism finds a suitable projection and recomputes new importance sampling (IS) ratios.
Abstract:
Simulating particle beam interactions includes identifying a set of n functions F1, F2, . . . , Fn corresponding to a plurality of different physical aspects of a particle beam, performing simulations of each Fi using a full physics model, selecting for each Fi a distribution function fi that models relevant behavior and reducing computation of the full physics model for each Fi by replacing Fi with a distribution function fi. The computation reduction includes comparing a set of simulations wherein each fi replaces its respective Fi to determine if relevant behavior is accurately modeled and selecting one of fi or Fi for each n, for a Monte Carlo simulation based on a runtime and accuracy criteria.
Abstract:
A slew-based effective capacitance (Ceff) is used to compute gate output slew during early synthesis of an integrated circuit design. A π model is constructed for the gate and reduced to two parameters which are used to compute a slew value for the model, given a slew definition. A capacitance coefficient is then calculated as a function of this slew value. The effective capacitance is the product of the coefficient and the total capacitance of the π model. The output slew of the gate may in turn be computed using the slew-based Ceff. The coefficient may be computed by iteratively solving an equation representing output voltage over time dependent on the first and second parameters, by directly solving a closed-form equation which is a function of the first and second parameters, or by looking up the capacitance coefficient in a table indexed by the first and second parameters.