Abstract:
A method, computer system, and computer readable product for trajectory data compression are disclosed. In embodiments, the method comprises generating spatial data for one or more moving objects; projecting the data onto a network comprised of a plurality of trajectories, the network constraining movement of the one or more moving objects; and storing the projected data in a data store. In embodiments of the invention, the method further comprises translating updates and queries to the spatial data, using specified data of the network, into links to the data store, and using the links to update and query the data store. In embodiments of the invention, the specified data of the network are stored in a network store. In embodiments of the invention, each of the trajectories includes one or more sub-trajectories, and the projecting the spatial data onto a network includes projecting the spatial data onto the sub-trajectories.
Abstract:
A method and apparatus for determining similarity among gene sequences, for compressing a gene sequence, and for decompressing a gene sequence. The method for determining similarity between a first gene sequence and a second gene sequence includes: moving a sliding window of a predefined length on the first gene sequence and the second gene sequence respectively; extracting a first part String1i of the first gene sequence within the sliding window, and a second part String2i of the second gene sequence within the sliding window during the ith movement of the sliding window; and determining similarity between the first gene sequence and the second gene sequence based on the first part String1i and the second part String2i. Also provided is an apparatus for the above method.
Abstract:
A method includes generating a test model based on at least one of test group dependencies and test group constraints and generating a resource base. The method includes generating a cost model and generating a resource allocation plan based on the test model, the resource base, and the cost model.
Abstract:
A method for processing a time series includes dividing, with a processing device, the time series into a plurality of windows by time; extracting at least one group of similar subsequences from a current window among the plurality of windows; and updating a candidate list on the basis of comparison between similar subsequences in each group of the at least one group with k characteristic subsequences in the candidate list; wherein the k characteristic subsequences are k characteristic subsequences with a greatest number of occurrences in at least processed parts of the time series.
Abstract:
A method, computer system, and computer readable product for trajectory data compression are disclosed. In embodiments, the method comprises generating spatial data for one or more moving objects; projecting the data onto a network comprised of a plurality of trajectories, the network constraining movement of the one or more moving objects; and storing the projected data in a data store. In embodiments of the invention, the method further comprises translating updates and queries to the spatial data, using specified data of the network, into links to the data store, and using the links to update and query the data store. In embodiments of the invention, the specified data of the network are stored in a network store. In embodiments of the invention, each of the trajectories includes one or more sub-trajectories, and the projecting the spatial data onto a network includes projecting the spatial data onto the sub-trajectories.
Abstract:
Processing time sequence data for multiple sensors, wherein the multiple sensors are divided into multiple sensor groups and each data comprises a time stamp and a value associated with the timestamp. The method comprises: receiving time series data from each sensor; assigning the time series data received to a sensor group to which the sensor belongs; storing time series data in a first database of a first memory, such that multiple time series data assigned to the same sensor group in the multiple sensor groups are stored in at least one database record of the first database; obtaining the time series data of each sensor among the multiple sensors from the first database; storing time series data in a second database of a second memory, such that the multiple time series data from the same sensor are stored in at least one database record of the second database.
Abstract:
The present disclosure relates to methods and systems for storing and querying data. According to the embodiments of the present invention, two-layer indexes are created for multi-dimension data, wherein the primary index is created based on two or more dimensions to retrieve respective data units of the data, while the secondary index is created based on specific dimensions to retrieve respective data blocks in the data unit. Correspondingly, when receiving a multi-dimension query request for data, the primary retrieval first determines a data unit including the target data based on a primary index, and then the secondary retrieval quickly locates a data block including the target data based on the secondary index. In this way, the multi-dimension retrieval can be efficiently performed. Moreover, by appropriately setting the size of a smallest data block, the I/O efficiency of data access will be significantly enhanced.
Abstract:
Processing time sequence data for multiple sensors, wherein the multiple sensors are divided into multiple sensor groups and each data comprises a time stamp and a value associated with the timestamp. The method comprises: receiving time series data from each sensor; assigning the time series data received to a sensor group to which the sensor belongs; storing time series data in a first database of a first memory, such that multiple time series data assigned to the same sensor group in the multiple sensor groups are stored in at least one database record of the first database; obtaining the time series data of each sensor among the multiple sensors from the first database; storing time series data in a second database of a second memory, such that the multiple time series data from the same sensor are stored in at least one database record of the second database.
Abstract:
The present invention relates to processing of time series data. There is disclosed a method and apparatus for processing time series data, the method comprising: receiving a time series data set, wherein each element of the time series data set contains a timestamp and an original value associated with the timestamp, and times represented by all timestamps constitute a time series having fixed time intervals; converting each original value into a coded value occupying a smaller storage space, according to a predetermined monotone numerical compression coding scheme; dividing the times represented by all timestamps into a plurality of time intervals having a predetermined length; assembling coded values corresponding to all timestamps within each time interval into a data package such that the data package contains coded values arranged in an order of timestamps; and storing in a database record each data package and its associated identification of a time interval.
Abstract:
A method for processing a time series includes dividing, with a processing device, the time series into a plurality of windows by time; extracting at least one group of similar subsequences from a current window among the plurality of windows; and updating a candidate list on the basis of comparison between similar subsequences in each group of the at least one group with k characteristic subsequences in the candidate list; wherein the k characteristic subsequences are k characteristic subsequences with a greatest number of occurrences in at least processed parts of the time series.