Abstract:
A technique of operating a data processing system, includes logging addresses for cache lines modified by a producer core in a data array of a producer cache to create a high-availability (HA) log for the producer core. The technique also includes moving the HA log directly from the producer cache to a consumer cache of a consumer core and moving HA data associated with the addresses of the HA log directly from the producer cache to the consumer cache. The HA log corresponds to a cache line that includes multiple of the addresses. Finally, the technique includes processing, by the consumer core, the HA log and the HA data for the data processing system.
Abstract:
A technique of operating a data processing system, includes logging addresses for cache lines modified by a producer core in a data array of a producer cache to create a high-availability (HA) log for the producer core. The technique also includes moving the HA log directly from the producer cache to a consumer cache of a consumer core and moving HA data associated with the addresses of the HA log directly from the producer cache to the consumer cache. The HA log corresponds to a cache line that includes multiple of the addresses. Finally, the technique includes processing, by the consumer core, the HA log and the HA data for the data processing system.
Abstract:
In a NUMA-topology computer system that includes multiple nodes and multiple logical partitions, some of which may be dedicated and others of which are shared, NUMA optimizations are enabled in shared logical partitions. This is done by specifying a home node parameter in each virtual processor assigned to a logical partition. When a task is created by an operating system in a shared logical partition, a home node is assigned to the task, and the operating system attempts to assign the task to a virtual processor that has a home node that matches the home node for the task. The partition manager then attempts to assign virtual processors to their corresponding home nodes. If this can be done, NUMA optimizations may be performed without the risk of reducing the performance of the shared logical partition.
Abstract:
In a NUMA-topology computer system that includes multiple nodes and multiple logical partitions, some of which may be dedicated and others of which are shared, NUMA optimizations are enabled in shared logical partitions. This is done by specifying a home node parameter in each virtual processor assigned to a logical partition. When a task is created by an operating system in a shared logical partition, a home node is assigned to the task, and the operating system attempts to assign the task to a virtual processor that has a home node that matches the home node for the task. The partition manager then attempts to assign virtual processors to their corresponding home nodes. If this can be done, NUMA optimizations may be performed without the risk of reducing the performance of the shared logical partition.