摘要:
A method of producing a tool insert which comprises a central metal portion having edge regions of superabrasive material bonded thereto and presenting cutting edges or points for the tool insert is disclosed. A body (50) having major surfaces on each of opposite sides thereof, each having spaced strips (64) of superabrasive material, typically abrasive compact such as PCBN or PCD, for example, separated by a metal region or regions, such as cemented carbide, is provided. Each superabrasive strip of one major surface is arranged in register with a superabrasive strip of the opposite major surface. Alternatively, each superabrasive strip extends from one major surface to the opposite major surface. The body is severed from one major surface to the opposite major surface along at least two sets of planes intersecting at or in the respective superabrasive strips to produce the tool insert.
摘要:
A method of producing a tool insert which comprises a central metal portion having edge regions of superabrasive material bonded thereto and presenting cutting edges or points for the tool insert is disclosed. A body (50) having major surfaces on each of opposite sides thereof, each having spaced strips (64) of superabrasive material, typically abrasive compact such as PCBN or PCD, for example, separated by a metal region or regions, such as cemented carbide, is provided. Each superabrasive strip of one major surface is arranged in register with a superabrasive strip of the opposite major surface. Alternatively, each superabrasive strip extends from one major surface to the opposite major surface. The body is severed from one major surface to the opposite major surface along at least two sets of planes intersecting at or in the respective superabrasive strips to produce the tool insert.
摘要:
A method of producing a tool insert having superabrasive cutting points or edges is disclosed. A body (10) of a hard metal having major surfaces (12, 14) on each of opposite sides thereof, such as a cemented carbide disc, is provided. Each major surface of the body has an array of pockets (12) filled with a superabrasive material, typically an abrasive compact such as PCBN or PCD, for example. A pocket of one major surface is arranged to be in register with a pocket of the opposite major surface. The body is severed from one major surface to the opposite major surface along at least two sets of planes intersecting at or in respective superabrasive filled pockets to produce the tool insert. The severing of the body is carried out in such a manner as to expose the superabrasive material to form a cutting tip or edge in the tool insert.
摘要:
A correlation optical time domain reflectometer (OTDR) provides a correlation sequence that is continuously transmitted along a fiber for testing the fiber for anomalies. Such continuous transmission can result in beat noise that degrades the quality of the measured returns. In this regard, each sample is composed of backscatter returns from many points along the fiber that arrive at the OTDR at the same time. When a subset of these returns have frequency differences that appear in the passband of the OTDR receiver, the constructive and destructive interference of these returns at the OTDR receiver can cause significant low-frequency beat noise in the OTDR signal. An optical transmitter is configured to transmit the correlation sequence through the fiber using a wideband optical signal such that the beat noise is suppressed within the passband of the OTDR receiver, thereby improving the quality of the returns measured by the OTDR.
摘要:
A correlation optical time domain reflectometer (OTDR) provides a correlation sequence that is continuously transmitted along a fiber for testing the fiber for anomalies. Such continuous transmission can result in beat noise that degrades the quality of the measured returns. In this regard, each sample is composed of backscatter returns from many points along the fiber that arrive at the OTDR at the same time. When a subset of these returns have frequency differences that appear in the passband of the OTDR receiver, the constructive and destructive interference of these returns at the OTDR receiver can cause significant low-frequency beat noise in the OTDR signal. An optical transmitter is configured to transmit the correlation sequence through the fiber using a wideband optical signal such that the beat noise is suppressed within the passband of the OTDR receiver, thereby improving the quality of the returns measured by the OTDR.