Abstract:
An insert includes a main body extending from a first end toward a second end. The main body includes a cutting edge, a rake face, and a flute. In the rake face, a second rake angle of a second surface region positioned closer to the second end than a first surface region connected to the cutting edge is smaller than a first rake angle of the first surface region. A third rake angle of a third surface region is smaller than the second rake angle, the third surface region being adjacent to the flute rearward in a rotational direction and on an outer peripheral side of the main body.
Abstract:
Provided is a cutting tool for back turning capable of improving chipping resistance. A cutting tool wherein a wall surface of a chip breaker includes a first wall surface that is formed along a first ridgeline, and a reinforcing surface that is connected to the first wall surface and a first end surface at an end portion of the chip breaker on the side of a first cutting edge, and that forms an angle of 90 degrees or an obtuse angle with the first end surface.
Abstract:
A cutting tool has an insert holder with an indexable cutting insert removably secured therein. The cutting insert has upper and lower end surfaces with a peripheral side surface and a through bore extending therebetween, and a plurality of upper cutting edges formed on an upper peripheral edge. The peripheral side surface includes a non-circular upper relief surface adjacent the upper peripheral edge and a circular upper abutment surface spaced apart from the upper peripheral edge. Each upper cutting edge exhibits mirror symmetry about a bisector plane, and is non-linear in a side view. The through bore has an inner undercut formed by upper and lower bore surfaces located on opposite sides of a median plane, and a clamping member makes contact with one of the upper and lower bore surfaces at an inner contact zone located between the median plane and a seat surface of the insert holder.
Abstract:
The present invention provides a cutting tool that achieves cutting with high precision. The cutting tool of the present invention includes a cutting edge composed of a polycrystalline body including high-pressure-phase hard grains that contain one or more elements selected from the group consisting of boron, carbon, and nitrogen, the polycrystalline body being formed by subjecting a non-diamond carbon material and/or boron nitride, serving as a starting material, to direct conversion sintering under ultra-high pressure and high temperature without adding a sintering aid or a catalyst, in which letting the radius of curvature of the nose of the cutting edge of the cutting tool be R1, the sintered grains constituting the polycrystalline body have an average grain size of 1.2×R1 or less and a maximum grain size of 2×R1 or less.
Abstract:
A cutting insert has a first cutting edge provided with a chip breaker suitable for cutting an outermost region of a hole. The cutting insert has a substantially polygonal upper face, a substantially polygonal lower face, and a plurality of side faces extending between the upper face and the lower face. The plurality of side faces include a main side face constituting a flank of a linear cutting edge and a sub side face constituting a flank of a corner cutting edge; the main side face has a relief angle of 0°, the sub side face has a relief angle larger than 0°. A second cutting edge is further provided at an intersection portion between the main side face and the lower face.
Abstract:
In one aspect, cutting inserts are described herein comprising an indexable architecture including four cutting edges for material removal in cutting or drilling applications. A cutting insert described herein comprises four cutting edges formed by intersection of a rake face and flank faces, each cutting edge comprising a first linear portion connected to a second linear portion by a curved transition portion, wherein the second linear portion is parallel with an axis bisecting a virtual inscribed circle of the cutting insert and the first linear portion forming an angle θ with the axis.
Abstract:
A drill tool including a drill body having an inner insert and an outer insert at an end portion of the drill body. The distance from a central axis of the drill body to the outer insert is greater than the distance from the central axis to the inner insert. The cutting edges of the inner and outer inserts can be chamfered with the inner insert chambered at a radially inward portion and the outer insert chamfered at a radially outward portion. The inner insert and the outer insert can be mirror symmetric to one another. The inner insert and the outer insert are mounted to the drill body such that an effective cutting length of the inner insert equals an effective cutting length of the outer insert, the effective cutting lengths being measured in a direction perpendicular to the central axis.
Abstract:
An object is to prolong the life of a cubic boron nitride cutting tool used for cutting a heat-resistant alloy. A cubic boron nitride cutting tool includes an edge tip made of a sintered cubic boron nitride compact having a thermal conductivity within the range of 20 to 70 W/m·K and including cubic boron nitride particles having an average particle diameter within the range of 0.5 μm to 2 μm; and a base metal that holds the edge tip at a corner portion of the base metal, wherein a cutting edge formed on the edge tip of the tool has a positive rake angle.
Abstract:
A cutting insert is capable of boring or drilling without the formation of a prepared hole in a workpiece. A cutting edge includes a cutting edge portion extending from the outer peripheral side to the tool center axis side of a cutting tool body when the cutting insert is attached to a mounting seat, reaching a first plane including the tool center axis, and traversing from one side to the other side of a second plane which is perpendicular to the first plane and which includes the tool center axis.
Abstract:
A cutting insert includes a top face, a bottom face and a plurality of side walls extending between the top face and the bottom face. A peripheral cutting edge is defined at the juncture of each side wall and the top face. Each cutting edge includes a linear cutting edge portion and a concave cutting edge portion that curves inwardly in a plane that is perpendicular to a plane containing a central axis of the cutting insert. A radiused corner portion connects two adjacent cutting edges. Each linear cutting edge portion extends from one radiused corner portion to the concave cutting edge portion and the concave cutting edge portion extends from the linear cutting edge portion to another radiused corner portion.