摘要:
Various embodiments are disclosed herein that relate to coupling light into waveguides in a near-eye display device in a manner configured to be tolerant to misalignment of the waveguides with each other and/or other optics. For example, one disclosed embodiment provides a near-eye display device comprising one or more waveguides, wherein each waveguide comprises a light input coupling configured to receive light at a first side of the waveguide to couple the light into the waveguide, and a light output coupling configured to emit light from the waveguide at a second side of the waveguide, the second side of the waveguide being opposite the first side of the waveguide.
摘要:
Embodiments related near-eye display devices having angularly multiplexed holograms are disclosed. One disclosed embodiment provides a near-eye display device including an image source, a waveguide, and a controller. The waveguide is configured to propagate light received the image source to a user of the near-eye display device, and includes a holographic grating comprising a plurality of angularly multiplexed holograms. The controller is configured to control display of an image via the image source.
摘要:
In a near-eye or heads-up display system including a display engine and an optical waveguide, a quarter-wave retarder (QWR) is positioned between a polarizing beam splitter (PBS) of the display engine and an input diffraction grating of the waveguide. Additionally, a linear polarizer can be positioned between the PBS and the QWR. Light corresponding to an image generated by a reflective microdisplay of the display engine is diffracted into the waveguide by the input diffraction grating, so it can travel by way of total internal reflection to an output coupler and viewed by a human eye. The QWR alone, or in combination with the linear polarizer, prevents a ghost image that may otherwise occur if a portion of the light corresponding to the image, that is diffracted into the waveguide by the input diffraction grating, is diffractively out-coupled by the input diffraction grating and thereafter reflects off the reflective microdisplay.
摘要:
In a near-eye or heads-up display system including a display engine and an optical waveguide, a quarter-wave retarder (QWR) is positioned between a polarizing beam splitter (PBS) of the display engine and an input diffraction grating of the waveguide. Additionally, a linear polarizer can be positioned between the PBS and the QWR. Light corresponding to an image generated by a reflective microdisplay of the display engine is diffracted into the waveguide by the input diffraction grating, so it can travel by way of total internal reflection to an output coupler and viewed by a human eye. The QWR alone, or in combination with the linear polarizer, prevents a ghost image that may otherwise occur if a portion of the light corresponding to the image, that is diffracted into the waveguide by the input diffraction grating, is diffractively out-coupled by the input diffraction grating and thereafter reflects off the reflective microdisplay.
摘要:
The technology provides a waveguide display having a compact projection light engine and a diffractive waveguide. The diffractive waveguide includes input diffraction gratings with rolled k-vectors. The projection light engine provides collimating light to a projected exit pupil external to the diffractive waveguide. The projection light engine components may include a light (or illuminating) source, microdisplay, lenticular screen, doublet, polarizing beam splitter (PBS), clean-up polarizer, fold mirror, curved reflector and quarter waveplate. A method of manufacturing a diffractive waveguide includes providing input gratings with rolled k-vectors. Rays of light are diffracted by, and passed through, a master hologram to form input diffraction gratings of a copy substrate. A second copy substrate may likewise be formed with a different master hologram. Multiple copy substrates may be assembled to form a multi-layer diffractive waveguide (or multiple diffractive waveguides) having input diffraction gratings with increased diffraction efficiency and angular bandwidth.
摘要:
A device and method for performing a preliminary test on a neat serum sample contained in a primary collection tube is provided herein. The method includes the steps of positioning of an optical probe near the primary collection tube and monitoring the neat serum sample in the primary collection tube to determine whether an interferant, such as hemolysis, icteris and lipemia are present in the serum sample. From this test, a hemolytic index, an icteric index and a lipemic index can also be established for the neat serum sample. Based upon these serum indices, the neat serum sample can be transferred to a clinical analyzer for additional testing or to waste receptacle because the sample is compromised. Additionally, a volume test can be performed on the serum sample in the primary collection tube so that the serum sample can be properly allocated during subsequent testing.
摘要:
A device and method for performing a preliminary test on a neat serum sample contained in a primary collection tube is provided herein. The method includes the steps of positioning of an optical probe near the primary collection tube and monitoring the neat serum sample in the primary collection tube to determine whether an interferant, such as hemolysis, icteris and lipemia are present in the serum sample. From this test, a hemolytic index, an icteric index and a lipemic index can also be established for the neat serum sample. Based upon these serum indices, the neat serum sample can be transferred to a clinical analyzer for additional testing or to waste receptacle because the sample is compromised. Additionally, a volume test can be performed on the serum sample in the primary collection tube so that the serum sample can be properly allocated during subsequent testing.