摘要:
An arrangement is disclosed for optically reading out the information from substrates having a multiplicity of individual samples, in particular for analyzing chemical and biological sample carriers. The arrangement presents a new possibility for optically reading out the information from matrix-type substrates having a multiplicity of individual samples which allows a fast read-out of a radiation which is influenced by the individual samples with a high degree of sensitivity. This possibility is achieved by the fact that, in the case of optically reading a matrix-type substrate having a multiplicity of metrically ordered pixels, the receiver that is provided is an individual receiver which has high sensitivity and a uniform receiver area, an electrooptical matrix and also an imaging optical system are present, each substrate pixel being assigned to a matrix pixel region by the imaging optical system, and the matrix can be driven in such a way that matrix regions which allow exclusively the feeding of radiation from a substrate pixel to the receiver can be switched separately. Radiation quantities from in each case at least one substrate pixel successively impinging on the receiver over a suitably chosen time interval. The result is that it is possible to evaluate a series of measured radiation quantities from selected sequences of substrate pixels at the output of the receiver.
摘要:
Disclosed are photometric methods and devices for determining optical pathlength of liquid samples containing analytes dissolved or suspended in a solvent. The methods and devices rely on determining a relationship between the light absorption properties of the solvent and the optical pathlength of liquid samples containing the solvent. This relationship is used to establish the optical pathlength for samples containing an unknown concentration of analyte but having similar solvent composition. Further disclosed are methods and devices for determining the concentration of analyte in such samples where both the optical pathlength and the concentration of analyte are unknown. The methods and devices rely on separately determining, at different wavelengths of light, light absorption by the solvent and light absorption by the analyte. Light absorption by the analyte, together with the optical pathlength so determined, is used to calculate the concentration of the analyte. Devices for carrying out the methods particularly advantageously include vertical-beam photometers containing samples disposed within the wells of multi-assay plates, wherein the photometer is able to monitor light absorption of each sample at multiple wavelengths, including in the visible or UV-visible region of the spectrum, as well as in the near-infrared region of the electromagnetic spectrum. Novel photometer devices are described which automatically determine the concentration of analytes in such multi-assay plates directly without employing a standard curve.
摘要:
An optical sensor is disclosed for use in an interactive cell processing system that includes a plurality of sensors arranged for monitoring and providing sensor data to a control module that directs processing of biological cells. The sensors including an optical sensor for characterizing a fluid transferred in a sterile manner during the processing. The optical sensor includes a light source, a light detector, a cuvette and a control circuit. The light source is connected to a control circuit and is constructed and arranged to emit light of at least one selected wavelength directed toward the fluid. The cuvette is constructed as a part of a fluid distribution manifold that includes several conduits for transferring the sterile fluid during the processing, wherein the cuvette is constructed and arranged to convey the fluid. The light detector is connected to the control circuit and is constructed and arranged to detect light that was emitted from the source and has interacted with the fluid flowing inside the cuvette. The control circuit is constructed and arranged to characterize the fluid in the cuvette based on the detected light.
摘要:
The present invention provides a method of analyzing multiple samples simultaneously by absorption detection. The method comprises: (i) providing a planar array of multiple containers, each of which contains a sample comprising at least one absorbing species, (ii) irradiating the planar array of multiple containers with a light source and (iii) detecting absorption of light with a detetion means that is in line with the light source at a distance of at leaat about 10 times a cross-sectional distance of a container in the planar array of multiple containers. The absorption of light by a sample indicates the presence of an absorbing species in it. The method can further comprise: (iv) measuring the amount of absorption of light detected in (iii) indicating the amount of the absorbing species in the sample. Also provided by the present invention is a system for use in the abov metho.The system comprises; (i) a light source comrnpising or consisting essentially of at leaat one wavelength of light, the absorption of which is to be detected, (ii) a planar array of multiple containers, and (iii) a detection means that is in line with the light source and is positioned in line with and parallel to the planar array of multiple contiainers at a distance of at least about 10 times a cross-sectional distance of a container.
摘要:
The method and respective device monitors the quality of data transmission over wavelength-division-multiplexed channels on an optical waveguide using an analog check signal. The analog check signal is formed by decoupling and combining a fraction p of the signals of each of the wavelengths being monitored at a starting point of a monitoring path, and is then transmitted on an additional wavelength in parallel with the wavelengths being monitored. At a monitoring point on the monitoring path provided for the purpose, a fraction p of the signals on the wavelengths being monitored are decoupled again, as well as at least a fraction of the analog check signal. These decoupled signals are evaluated in order to determine if these has been any change in the intensities of the signals on the wavelengths being monitored between the starting point and the monitoring point.
摘要:
The invention comprises a method for determining an analyte in which a dye solution is illuminated to induce a first and a second output light at a first and second wavelength, respectively, and the analyte concentration is determined from the measured first and second output intensities. The apparatus includes a probe (12) containing a dye solution, a light source (24), a frequency-sensitive photodetector (28) and a controller (90).
摘要:
An on-line sensor is provided that supplies light to a spectrophotometer to measure the color a product extruded through a conduit having a bypass section. The on-line sensor includes a transparent member with an opaque outer surface and an interior portion extending from a first end to a second end to the transparent member. The interior portion is connected to the bypass section, and the product that flows through the bypass section is supplied to the interior section of the transparent member. A light source connected to the transparent member and provides light to the transparent member inside the opaque outer surface. A light receiver is connected to the transparent member and captures light from the light source in the transparent member that is affected by the product. The captured light is supplied to the spectrophotometer to at least measure the properties of the product supplied to the interior portion of the transparent member.
摘要:
A method and apparatus for measuring a slurry distribution. A slurry solution is doped with a light absorbing dye having an absorptivity sensitive to a physical parameter such as acidity, temperature or pressure. The solution is delivered between a platen and substrate in a first physical state where it absorbs light. A laser beam is generated, transmitted through the slurry layer, reflected off of the substrate, and detected by a photodetector. The thickness of the slurry is measured from its absorptivity and the transmittance of the laser beam. A relative motion between the light source and substrate allows the slurry layer thickness to be measured as a function of distance from the center of the substrate. A final water rinse removes the slurry and brings any residual slurry to a/second physical state where it does not absorb light.
摘要:
A device and method for performing a preliminary test on a neat serum sample contained in a primary collection tube is provided herein. The method includes the steps of positioning of an optical probe near the primary collection tube and monitoring the neat serum sample in the primary collection tube to determine whether an interferant, such as hemolysis, icteris and lipemia are present in the serum sample. From this test, a hemolytic index, an icteric index and a lipemic index can also be established for the neat serum sample. Based upon these serum indices, the neat serum sample can be transferred to a clinical analyzer for additional testing or to waste receptacle because the sample is compromised. Additionally, a volume test can be performed on the serum sample in the primary collection tube so that the serum sample can be properly allocated during subsequent testing.
摘要:
A device and method for performing a preliminary test on a neat serum sample contained in a primary collection tube is provided herein. The method includes the steps of positioning of an optical probe near the primary collection tube and monitoring the neat serum sample in the primary collection tube to determine whether an interferant, such as hemolysis, icteris and lipemia are present in the serum sample. From this test, a hemolytic index, an icteric index and a lipemic index can also be established for the neat serum sample. Based upon these serum indices, the neat serum sample can be transferred to a clinical analyzer for additional testing or to waste receptacle because the sample is compromised. Additionally, a volume test can be performed on the serum sample in the primary collection tube so that the serum sample can be properly allocated during subsequent testing.