摘要:
A substrate inspection method includes forming a conductive thin film on a surface of an inspection target substrate with a pattern formed thereon, generating an electron beam and irradiating the substrate having the thin film formed thereon with the electron beam, detecting at least any of secondary electrons, reflected electrons and backscattered electrons released from the surface of the substrate and outputting signals constituting an inspection image, and selecting at least any of a material, a film thickness and a configuration for the thin film, or at least any of a material, a film thickness and a configuration for the thin film and an irradiation condition with the electron beam according to an arbitrary inspection image characteristic so that an inspection image according to an inspection purpose can be obtained.
摘要:
An apparatus capable of detecting defects of a pattern on a sample with high accuracy and reliability and at a high throughput, and a semiconductor manufacturing method using the same are provided. The electron beam apparatus is a mapping-projection-type electron beam apparatus for observing or evaluating a surface of the sample by irradiating the sample with a primary electron beam and forming on a detector an image of reflected electrons emitted from the sample. An electron impact-type detector such as an electron impact-type CCD or an electron impact-type TDI is used as the detector for detecting the reflected electrons. The reflected electrons are selectively detected from an energy difference between the reflected electrons and secondary electrons emitted from the sample. To eliminate charge-up caused on the sample surface by irradiation with the primary electron beam, the surface of the sample is covered with a cover placed above the sample and a gas is supplied to the space above the sample covered with the cover. The gas is brought into contact with the sample surface to reduce charge-up on the sample surface.
摘要:
According to an embodiment, a pattern inspection apparatus includes an imaging unit, a defect detection unit, and an inspection control unit. The imaging unit is configured to image a pattern on a substrate to acquire a pattern image. The defect detection unit is configured to detect a defect of the pattern by a first outer shape comparison in associate with the pattern image and design information for the pattern or by a comparison in pixel values between images of patterns designed to be formed into the same shape in the substrate. The inspection control unit is configured to select an inspection based on the amount of the defect detected by the first outer shape comparison or based on a value of a gradient of an edge profile of the pattern image and to control the imaging unit and the defect detection unit in accordance with the selected inspection.
摘要:
A sample is evaluated at a high throughput by reducing axial chromatic aberration and increasing the transmittance of secondary electrons. Electron beams emitted from an electron gun 1 are irradiated onto a sample 7 through a primary electro-optical system, and electrons consequently emitted from the sample are detected by a detector 12 through a secondary electro-optical system. A Wien filter 8 comprising a multi-pole lens for correcting axial chromatic aberration is disposed between a magnification lens 10 in the secondary electro-optical system and a beam separator 5 for separating a primary electron beam and a secondary electron beam, for correcting axial chromatic aberration caused by an objective lens 14 which comprises an electromagnetic lens having a magnetic gap defined on a sample side.