Abstract:
A method for producing a solid electrolyte having an argyrodite-type crystal structure, the method comprising: heat-treating a raw material mixture comprising lithium, sulfur, phosphorus and halogen in a solvent using a pressure-resistant container or under refluxing; removing the solvent; and firing a treated product obtained by the heat treatment.
Abstract:
A method for producing a sulfide solid electrolyte comprising an argyrodite-type crystal structure, wherein phosphorus sulfide having a phosphorus content of 28.3 mass % or less and containing free sulfur is used as the raw material.
Abstract:
A method for producing sulfide glass wherein phosphorus sulfide satisfying the following formula (1) is used as a raw material: 100×A/B≧37 (1) wherein in the formula, A is peak areas of peaks that appear at peak positions in a range of 57.2 ppm or more and 58.3 ppm or less, and 63.0 ppm or more and 64.5 ppm or less in 31PNMR spectroscopy, and B is the total of peak areas of all peaks measured in 31PNMR spectroscopy.
Abstract:
A method for producing a sulfide solid electrolyte, wherein lithium sulfide and a compound represented by the following formula (1) are used as raw materials: PSX3 (1) (wherein, X is an element selected from F, CI, Br and I.).
Abstract:
A method for producing a solid electrolyte comprises heat-treating a raw material comprising lithium, sulfur, and phosphorus as constituent elements in a flowing state, thereby manufacturing a sulfide solid electrolyte comprising an argyrodite type crystal structure.
Abstract:
Provided is a polycarbonate resin for a liquid crystal member, which is produced by using an end terminator containing 3-pentadecylphenol obtained from a natural product, and which has a YI value of 1.1 or less or a light transmittance at a wavelength of 400 nm of 85% or more.