Biological detection based on differentially coupled nanomechanical systems using self-sensing cantilevers with attonewton force resolution
    3.
    发明授权
    Biological detection based on differentially coupled nanomechanical systems using self-sensing cantilevers with attonewton force resolution 有权
    基于差分耦合纳米机械系统的生物检测,使用自感悬臂与分子力分解

    公开(公告)号:US07959873B1

    公开(公告)日:2011-06-14

    申请号:US11491394

    申请日:2006-07-20

    IPC分类号: G01N33/00

    摘要: A biosensor is comprised of a free and a biofunctionalized recognition self-sensing nanocantilever, a dock adjacent to the ends of the nanocantilevers, and a gap between the nanocantilevers and dock. The self-sensing cantilevers each include a semiconductor piezoresistor defined in a pair of legs about which the cantilevers flex. A bias power or current is applied to the piezoresistor. The sensitivity of the cantilevers is optimized for a given ambient temperature and geometry of the cantilevers and dock by minimizing the force spectral density, SF, of the cantilevers to determine the optimum bias power, Pin. A sub-aN/√Hz force sensitivity is obtained by scaling down the dimensions of the cantilevers and supplying an optimum bias power as a function of temperature and geometry.

    摘要翻译: 生物传感器由免费的和生物功能化的识别自感纳米聚合物,邻近纳米聚合物末端的码头以及纳米悬臂与码头之间的间隙组成。 自感悬臂各自包括限定在一对腿部的半导体压敏电阻,悬臂弯曲在该支脚周围。 偏压电源或电流施加到压敏电阻。 通过最小化悬臂的力谱密度(SF)来确定最佳偏置功率Pin,悬臂梁的灵敏度对给定的环境温度和悬臂和基座的几何形状进行了优化。 通过缩小悬臂的尺寸并提供作为温度和几何形状的函数的最佳偏置功率,可以获得sub-aN /√Hz力灵敏度。