摘要:
A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a Group 4 metal complex. The complex incorporates a dianionic, tridentate heterocyclic-8-anilinoquinoline ligand. In one aspect, a supported catalyst system is prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the dianionic, tridentate Group 4 metal complex. The Group 4 metal complexes are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
摘要:
Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise a transition metal complex, an optional activator, and an optional support. The complex is the reaction product of a Group 3-6 transition metal source, an optional alkylating agent, and a ligand precursor comprising a 2-imino-8-anilinoquinoline or a 2-aminoalkyl-8-anilinoquinoline. The catalysts, which are easy to synthesize by in-situ metallation of the ligand precursor, offer polyolefin manufacturers good activity and the ability to make high-molecular-weight ethylene copolymers that have little or no long-chain branching.
摘要:
A method of preparing supported catalysts useful for olefin polymerization is described. The catalysts comprise a Group 4 metal complex that incorporates a tridentate dianionic ligand. An activator mixture is first made from a boron compound having Lewis acidity and an excess of an alumoxane. The activator mixture is then combined with a support and the Group 4 metal complex to give a supported catalyst. The method provides an active, supported catalyst capable of making high-molecular-weight polyolefins.
摘要:
Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-aryl-8-anilinoquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
摘要:
Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-(2-aryloxy)quinoline or 2-(2-aryloxy)dihydroquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
摘要:
A method of preparing supported catalysts useful for olefin polymerization is described. The catalysts comprise a Group 4 metal complex that incorporates a tridentate dianionic ligand. An activator mixture is first made from a boron compound having Lewis acidity and an excess of an alumoxane. The activator mixture is then combined with a support and the Group 4 metal complex to give a supported catalyst. The method provides an active, supported catalyst capable of making high-molecular-weight polyolefins.
摘要:
Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a Group 4 metal complex that incorporates a dianionic, tridentate 2-(2-aryloxy)quinoline or 2-(2-aryloxy)dihydroquinoline ligand. In one aspect, supported catalysts are prepared by first combining a boron compound having Lewis acidity with excess alumoxane to produce an activator mixture, followed by combining the activator mixture with a support and the tridentate, dianionic Group 4 metal complex. The catalysts are easy to synthesize, support, and activate, and they enable facile production of high-molecular-weight polyolefins.
摘要:
The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprisingA) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.
摘要:
Process for the preparation of an ethylene copolymer composition having a polydispersity index Mw/Mn of from 3 to 100, comprising a) feeding ethylene to at least one polymerization reactor; b) performing in the at least one polymerization reactor an oligomerization of ethylene in the presence of an oligomerization catalyst component (C) to produce comonomer; c) performing simultaneously in the at least one polymerization reactor polymerization reactions in the presence of catalyst components (A) and (B) producing, respectively, a first and a second polyethylene fraction, wherein the weight average molecular weight Mw of the first polyethylene fraction produced by catalyst component (A) is less than the Mw of the second polyethylene fraction produced by catalyst component (B) and the comonomer incorporation ability of catalyst component (B) is higher than the comonomer incorporation ability of catalyst component (A); and d) withdrawing the ethylene copolymer composition from the polymerization reactor.
摘要:
Process for the polymerization of olefins at temperatures of from −20 to 200° C. and pressures of from 0.1 to 20 MPa in the presence of a polymerization catalyst and an antistatic agent, wherein the antistatic agent is an antistatically acting composition comprising a polysulfone copolymer, a polymeric compound comprising basic nitrogen atoms, an oil-soluble sulfonic acid and optionally a solvent and the polysulfone copolymer, the polymeric compound comprising basic nitrogen atoms and the oil-soluble sulfonic acid constitute together at least 1 wt. % of the antistatically acting composition, and wherein the antistatically acting composition, when contacted as solution or suspension in heptane, wherein the solution or suspension has a concentration of about 80 g of the antistatically acting composition per liter of heptane, with a 2 M solution of triethylaluminum in heptane at 0° C., generates less than 5 cm3, measured at 23° C. and atmospheric pressure, of ethane per gram of the antistatically acting composition and use of an antistatically acting composition as antistatic agent for the polymerization of olefins at temperatures of from −20 to 200° C. and pressures of from 0.1 to 20 MPa in the presence of a polymerization catalyst.