Abstract:
A liquid crystal display device has stripe-shaped color filters and arranges the driver ICs on the top or the bottom side portion, and on the left or right side portion of the liquid crystal panel such that the liquid crystal display device has a single bank structure. Accordingly, a difference of a signal delay between the adjacent two odd and even data or gate lines is prevented. As a result, the brightness and the resolution are improved.
Abstract:
A liquid crystal display device has stripe-shaped color filters and arranges the driver ICs on the top or the bottom side portion, and on the left or right side portion of the liquid crystal panel such that the liquid crystal display device has a single bank structure. Accordingly, a difference of a signal delay between the adjacent two odd and even data or gate lines is prevented. As a result, the brightness and the resolution are improved.
Abstract:
An array substrate for use in an IPS-LCD device includes a gate electrode, a gate line, a common line, and a plurality of common electrodes that have zigzag shapes on a substrate. A gate insulation layer is formed over an entire surface of tha substrate, and an active layer and ohmic contact layers are formed in series on the gate insulation layer and over the gate electrode. Over the gate electrode and on the ohmic contact layers, source and drain electrodes are formed. At this time, a data line is formed on the gate insulation layer. A passivation layer covers an entire surface of the substrate and has a drain contact hole that expose a portion of the drain contact hole. On the passivation layer, a plurality of pixel electrodes are formed in substantially zigzag or bent shapes. These pixel electrodes correspond to the common electrodes and are spaced apart from each other. The common and pixel electrodes have a plurality of bend portions and each bend portion has an inner part that is filled with a conductive material. Since this bend portion controls a rotational direction of liquid crystal molecules, the IPS-LCD device of the present invention has a wide viewing angle and prevents the color-shift and the brightness deterioration.
Abstract:
The present invention provides a color mixing lens which can improve color reproducibility, be made slim and adjust an emission pattern; and a liquid crystal display device having the same. The color mixing lens includes a light receiving portion having at least two light emission diodes positioned at a side for emitting color lights different from each other and light receiving recesses for placing the light emission diodes therein respectively, a color mixing portion formed on the light receiving portion for mixing the lights from the light emission diodes into a white color light, and a light emission portion formed on the color mixing portion for emitting the white light from the color mixing portion through a side thereof.
Abstract:
A flat panel display device includes a display panel having at least one link pixel which has a non-defect area and a panel defect area and where adjacent pixels are linked to each other; a memory which stores a first compensation data for compensating the data which are to be displayed in the panel defect area, a second compensation data for compensating the data of a bordering part between the panel defect area and the non-defect area, and a third compensation data for compensating the data which are to be displayed in the link pixel. The first compensation data is adjusted through at spatial dispersion or temporal dispersion; the data that are to be displayed in a fixed area inclusive of the boundary are adjusted by dispersing the second compensation data to the fixed area inclusive of the boundary; the data that are to be displayed in the link pixel are adjusted to the third compensation data.
Abstract:
The present invention provides a color mixing lens which can improve color reproducibility, be made slim and adjust an emission pattern; and a liquid crystal display device having the same. The color mixing lens includes a light receiving portion having light receiving recesses which respectively house light emission diodes formed at a side surface thereof for positioning at least two light emission diodes at the side surface for producing color lights different from each other, a color mixing portion formed on the light receiving portion for mixing the lights from the light emission diodes into a white color light, and a light emission portion formed on the color mixing portion for emitting the white light from the color mixing portion through a top surface thereof.
Abstract:
An electroluminescent display device includes first and second substrates facing each other and having a pixel region and a non-pixel region; a thin film transistor and an array layer on an inner surface of the first substrate; a first electrode on an inner surface of the second substrate; a buffer layer on the first electrode in the non-pixel region; a shielding pattern on the buffer layer; a separator on the shielding pattern; an emitting layer on the first electrode in the pixel region; a second electrode on the emitting layer; and a connection electrode between the first and second substrates.
Abstract:
The present invention provides a color mixing lens which can improve color reproducibility, be made slim and adjust an emission pattern; and a liquid crystal display device having the same. The color mixing lens includes a light receiving portion having at least two light emission diodes positioned at a side for emitting color lights different from each other and light receiving recesses for placing the light emission diodes therein respectively, a color mixing portion formed on the light receiving portion for mixing the lights from the light emission diodes into a white color light, and a light emission portion formed on the color mixing portion for emitting the white light from the color mixing portion through a side thereof.
Abstract:
A side type light emitting diode (LED) liquid crystal display (LCD) includes a prism light guide panel in a side type LED backlight to allow scanning and divisional driving to improve motion blur of video or an overall sharpness of an image. The side type LED LCD includes: a lower cover; first and second prism light guide panels disposed in a plurality of layers on the lower cover, ridges of prism mountains formed on the first prism light guide panel being substantially perpendicular to ridges of prism mountains formed on the second prism light guide panel; lamp units being provided on at least one side of each prism light guide panel along the ridges of the prism mountains; and a liquid crystal panel separated from the prism light guide panels that receives light transmitted through the first and second light guide panels emitted from the light units.
Abstract:
Disclosed is a backlight unit and an LCD device having the same. The backlight unit comprises a plurality of light sources for generating light, a light guide plate for converting linear light generated from the light source into planar light and irradiating the light onto an LCD panel, a plurality of optical patterns formed on the light guide plate, wherein the optical patterns have different sizes for uniformly applying light incident onto the LCD panel to the entire LCD panel, and a diffusion sheet for transmitting light emitted from the light guide plate in a direction substantially perpendicular to the LCD panel.