Abstract:
A method of manufacturing a metal foil with microcracks includes placing a metal foil between a first material sheet and a second material sheet and then rolling them to form a plurality of microcracks in the metal foil. The microcracks are penetrating, and a sidewall of each of the microcracks is an irregular rough surface. Two ends of each of the microcracks are acute angles. A sound-absorbing structure includes at least one metal foil and a base plate kept at a distance from the metal foil, wherein at least one resonant cavity air layer is formed between the metal foil and the base plate by the distance, and the metal foil has microcracks.
Abstract:
Provided are an actuator, method for manufacturing the actuator, and acoustic transmitter having the actuator. The actuator includes: an elastic metal member having a plurality of curved segments and a plurality of connection segments which constitute a ring structure with a long-axis direction and a short-axis direction; a multilayer piezoelectric member disposed within the ring structure and having a plurality of stacked piezoelectric units along the long-axis direction; and a plurality of coupling members disposed within the ring structure, wherein the multilayer piezoelectric member has two ends in the long-axis direction that are coupled to the connection segments of the elastic metal member in the long-axis direction. A preload stress is imparted to the elastic metal member. A plurality of coupling members having a size corresponding to the preload stress are disposed between the elastic metal member and the multilayer piezoelectric member.
Abstract:
Provided are an actuator, method for manufacturing the actuator, and acoustic transmitter having the actuator. The actuator includes: an elastic metal member having a plurality of curved segments and a plurality of connection segments which constitute a ring structure with a long-axis direction and a short-axis direction; a multilayer piezoelectric member disposed within the ring structure and having a plurality of stacked piezoelectric units along the long-axis direction; and a plurality of coupling members disposed within the ring structure, wherein the multilayer piezoelectric member has two ends in the long-axis direction that are coupled to the connection segments of the elastic metal member in the long-axis direction. A preload stress is imparted to the elastic metal member. A plurality of coupling members having a size corresponding to the preload stress are disposed between the elastic metal member and the multilayer piezoelectric member.
Abstract:
A piezoelectric electroacoustic transducer is disclosed. The piezoelectric electroacoustic transducer includes a diaphragm, a piezoelectric element disposed on the diaphragm, an elastic element connected with and around the diaphragm, a frame around the elastic element and being disassembled so as to adjust an inner-frame projected area of the frame, and a buffer interposed between the elastic element and the frame, wherein the frame has an inner-frame projected area less than a planar projected area of the diaphragm, the elastic element, and the buffer, such that the frame always provides a compressive stress to the diaphragm, the piezoelectric element, the elastic element, and the buffer. The piezoelectric electroacoustic transducer may be implemented as a loudspeaker or a microphone.
Abstract:
A method of manufacturing a metal foil with microcracks includes placing a metal foil between a first material sheet and a second material sheet and then rolling them to form a plurality of microcracks in the metal foil. The microcracks are penetrating, and a sidewall of each of the microcracks is an irregular rough surface. Two ends of each of the microcracks are acute angles. A sound-absorbing structure includes at least one metal foil and a base plate kept at a distance from the metal foil, wherein at least one resonant cavity air layer is formed between the metal foil and the base plate by the distance, and the metal foil has microcracks.