Abstract:
A three-dimensional structure includes a plate and a three-dimensional component disposed on the plate. The three-dimensional component contains at least one first structure and at least one second structure. The first structure is an auxetic structure, and the second structure is different from the first structure. The at least one first structure and the at least one second structure are provided layer by layer along a thickness direction of the plate on the plate.
Abstract:
A method of manufacturing a metal foil with microcracks includes placing a metal foil between a first material sheet and a second material sheet and then rolling them to form a plurality of microcracks in the metal foil. The microcracks are penetrating, and a sidewall of each of the microcracks is an irregular rough surface. Two ends of each of the microcracks are acute angles. A sound-absorbing structure includes at least one metal foil and a base plate kept at a distance from the metal foil, wherein at least one resonant cavity air layer is formed between the metal foil and the base plate by the distance, and the metal foil has microcracks.
Abstract:
Provided are an actuator, method for manufacturing the actuator, and acoustic transmitter having the actuator. The actuator includes: an elastic metal member having a plurality of curved segments and a plurality of connection segments which constitute a ring structure with a long-axis direction and a short-axis direction; a multilayer piezoelectric member disposed within the ring structure and having a plurality of stacked piezoelectric units along the long-axis direction; and a plurality of coupling members disposed within the ring structure, wherein the multilayer piezoelectric member has two ends in the long-axis direction that are coupled to the connection segments of the elastic metal member in the long-axis direction. A preload stress is imparted to the elastic metal member. A plurality of coupling members having a size corresponding to the preload stress are disposed between the elastic metal member and the multilayer piezoelectric member.
Abstract:
Provided are an actuator, method for manufacturing the actuator, and acoustic transmitter having the actuator. The actuator includes: an elastic metal member having a plurality of curved segments and a plurality of connection segments which constitute a ring structure with a long-axis direction and a short-axis direction; a multilayer piezoelectric member disposed within the ring structure and having a plurality of stacked piezoelectric units along the long-axis direction; and a plurality of coupling members disposed within the ring structure, wherein the multilayer piezoelectric member has two ends in the long-axis direction that are coupled to the connection segments of the elastic metal member in the long-axis direction. A preload stress is imparted to the elastic metal member. A plurality of coupling members having a size corresponding to the preload stress are disposed between the elastic metal member and the multilayer piezoelectric member.
Abstract:
A piezoelectric electroacoustic transducer is disclosed. The piezoelectric electroacoustic transducer includes a diaphragm, a piezoelectric element disposed on the diaphragm, an elastic element connected with and around the diaphragm, a frame around the elastic element and being disassembled so as to adjust an inner-frame projected area of the frame, and a buffer interposed between the elastic element and the frame, wherein the frame has an inner-frame projected area less than a planar projected area of the diaphragm, the elastic element, and the buffer, such that the frame always provides a compressive stress to the diaphragm, the piezoelectric element, the elastic element, and the buffer. The piezoelectric electroacoustic transducer may be implemented as a loudspeaker or a microphone.
Abstract:
A solar cell module includes a first substrate, a second substrate, at least one cell unit, a first packaging film, a second packaging film, a first protective layer, a second protective layer, and a plurality of support members. The first substrate and the second substrate are disposed opposite to each other. The cell unit is disposed between the first substrate and the second substrate. The first packaging film is disposed between the cell unit and the first substrate. The second packaging film is disposed between the cell unit and the second substrate. The first protective layer is disposed between the cell unit and the first packaging film. The second protective layer is disposed between the cell unit and the second packaging film. The support members are respectively disposed between the first packaging film and the second packaging film and surround at least two opposite sides of the cell unit.
Abstract:
A three-dimensional structure includes a plate and a three-dimensional component disposed on the plate. The three-dimensional component contains at least one first structure and at least one second structure. The first structure is an auxetic structure, and the second structure is different from the first structure. The at least one first structure and the at least one second structure are provided layer by layer along a thickness direction of the plate on the plate.
Abstract:
An osteo-implant including two end portions, at least one middle structure, and a plurality of connection portions is provided. The middle structure is disposed between the two end portions and includes a plurality of middle portions. The middle portions are connected to the two end portions through the connection portions. When the two end portions are moved relatively along an axial direction of the osteo-implant, the two end portions drive the middle portions to push with each other and have displacements along a radial direction of the osteo-implant through the connection portions, such that an outer diameter of the osteo-implant is increased by the middle portions.
Abstract:
A display panel including a first substrate, a second substrate, and a display medium layer is provided. The second substrate is disposed opposite to the first substrate. The display medium layer is disposed between the first substrate and the second substrate. At least one of the first substrate and the second substrate includes a plastic base and a support layer, and the plastic base is disposed between the support layer and the display medium layer. A thickness of the support layer ranges from 0.3 mm to 3 mm.
Abstract:
A dental implant, having a central cavity and a strength adjusting structure, is provided. A first opening of the central cavity and a second opening of the strength adjusting structure are both located on a top surface of the dental implant. The strength adjusting structure is located between the central cavity and a side surface of the dental implant. A ratio of a first depth of the strength adjusting structure in a length direction of the dental implant to a second depth of the central cavity in the length direction of the dental implant is greater than 0 and less than or equal to 0.8.