CAPACITIVE CHARGE BASED SELF-SENSING AND POSITION OBSERVER FOR ELECTROSTATIC MEMS MIRRORS

    公开(公告)号:US20210271072A1

    公开(公告)日:2021-09-02

    申请号:US16804424

    申请日:2020-02-28

    Abstract: An oscillator system includes an electrostatic oscillator structure configured to oscillate about an axis based on a deflection that varies over time; an actuator configured to drive the electrostatic oscillator structure about the axis, the actuator including a first capacitive element having a first capacitance dependent on the deflection and a second capacitive element having a second capacitance dependent on the deflection; a sensing circuit configured to receive a first displacement current from the first capacitive element and a second displacement current from the second capacitive element, to integrate the first displacement current to generate a first capacitive charge value, and to integrate the second displacement current to generate a second capacitive charge value; and a measurement circuit configured to receive the first and the second capacitive charge values and to measure the deflection of the electrostatic oscillator structure based on the first and the second capacitive charge values.

    LIDAR SENSORS AND METHODS FOR LIDAR SENSORS
    2.
    发明申请

    公开(公告)号:US20200150246A1

    公开(公告)日:2020-05-14

    申请号:US16679748

    申请日:2019-11-11

    Abstract: A light detection and ranging (LIDAR) sensor includes a first reflective surface configured to oscillate about a first rotation axis to deflect a light beam into an environment; and a second reflective surface configured to oscillate about a second rotation axis to guide light received from the environment onto a photodetector of the LIDAR sensor. The first rotation axis and the second rotation axis extend parallel to one another. The LIDAR sensor also includes a control circuit configured to drive the first reflective surface to oscillate with a first maximum deflection angle about the first rotation axis, and to drive the second reflective surface to oscillate with a second maximum deflection angle about the second rotation axis, the first maximum deflection angle being greater than the second maximum deflection angle, and an area of the first reflective surface is less than an area of the second reflective surface.

    CONTROLLING AN OSCILLATING SYSTEM

    公开(公告)号:US20210011134A1

    公开(公告)日:2021-01-14

    申请号:US16909098

    申请日:2020-06-23

    Abstract: A system includes a power driver, configured to generate an electric excitation; an oscillating system, configured to perform an oscillation induced by the electric excitation; a feedback detector, configured to detect a feedback measurement signal with to the oscillation; and a controller configured to operate: in a closed loop mode, to control the power driver to generate the electric excitation as a discontinuous electric excitation according to timing information obtained from the detected feedback measurement signal, to synchronize the discontinuous electric excitation with the detected feedback measurement signal; in a learning mode preceding the closed loop mode, to control the power driver to generate the electric excitation as a continuous electric excitation, to obtain timing information from the feedback measurement signal to be used, at least once, in the subsequent closed loop mode, to synchronize the discontinuous electric excitation with the detected feedback measurement signal.

    CAPACITIVE CHARGE BASED SELF-SENSING AND POSITION OBSERVER FOR ELECTROSTATIC MEMS MIRRORS

    公开(公告)号:US20220334377A1

    公开(公告)日:2022-10-20

    申请号:US17851297

    申请日:2022-06-28

    Abstract: An oscillator system includes an electrostatic oscillator structure configured to oscillate about an axis based on a deflection that varies over time; an actuator configured to drive the electrostatic oscillator structure about the axis, the actuator including a first capacitive element having a first capacitance dependent on the deflection and a second capacitive element having a second capacitance dependent on the deflection; a sensing circuit configured to receive a first displacement current from the first capacitive element and a second displacement current from the second capacitive element, to integrate the first displacement current to generate a first capacitive charge value, and to integrate the second displacement current to generate a second capacitive charge value; and a measurement circuit configured to receive the first and the second capacitive charge values and to measure the deflection of the electrostatic oscillator structure based on the first and the second capacitive charge values.

    FLEXIBLE LISSAJOUS SCANNING PATTERN BY PHASE MODULATION

    公开(公告)号:US20210344302A1

    公开(公告)日:2021-11-04

    申请号:US16861647

    申请日:2020-04-29

    Abstract: An oscillator system includes a first oscillator structure configured to oscillate about a first rotation axis at a first oscillation frequency; a second oscillator structure configured to oscillate about a second rotation axis at a second oscillation frequency; a driver circuit configured to generate a first driving signal to drive an oscillation of the first oscillator structure with a first oscillation phase and the first oscillation frequency and generate a second driving signal to drive an oscillation of the second oscillator structure with a second oscillation phase and the second oscillation frequency. The first oscillation frequency and the second oscillation frequency have a variable frequency ratio with respect to each other that varies over time. The driver circuit is configured to modulate at least one of the first oscillation phase or the second oscillation phase to modulate the variable frequency ratio.

    CONTROL STRUCTURE FOR OSCILLATORS WITH NONLINEAR FREQUENCY RESPONSE

    公开(公告)号:US20210223536A1

    公开(公告)日:2021-07-22

    申请号:US16749270

    申请日:2020-01-22

    Abstract: An oscillator control system includes an non-linear oscillator structure configured to oscillate about an axis; a driver circuit configured to generate a driving signal to drive the oscillator structure; a detection circuit configured to measure an angle amplitude and a phase error of the oscillator structure; an amplitude controller configured to generate a reference oscillator period based on the measured angle amplitude; a period and phase controller configured to receive the reference oscillator period and the measured phase error from the detection circuit, generate at least one control parameter of the driving signal based on the reference oscillator period and the measured phase error, and determine a driving period of the driving signal based on the reference oscillator period and the measured phase error. The driver circuit is configured to generate the driving signal based on the at least one control parameter and the driving period.

    METHOD OF MODE COUPLING DETECTION AND DAMPING AND USAGE FOR ELECTROSTATIC MEMS MIRRORS

    公开(公告)号:US20220187590A1

    公开(公告)日:2022-06-16

    申请号:US17122300

    申请日:2020-12-15

    Abstract: A scanning system includes a microelectromechanical system (MEMS) scanning structure configured with a desired rotational mode of movement based on a driving signal; a plurality of comb-drives configured to drive the MEMS scanning structure according to the desired rotational mode of movement based on the driving signal, each comb-drive including a rotor comb electrode and a stator comb electrode that form a capacitive element that has a capacitance that depends on the deflection angle of the MEMS scanning structure; a driver configured to generate the at least one driving signal; a sensing circuit selectively coupled to at least a subset of the plurality of comb-drives for receiving sensing signals therefrom, wherein each sensing signal is representative of the capacitance of a corresponding comb-drive; and a processing circuit configured to determine a scanning direction of the MEMS scanning structure in the desired rotational mode of movement based on the sensing signals.

Patent Agency Ranking