Abstract:
A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced. As the bandwidth or capacity requirements of the leaf nodes change, the number of subcarriers, and thus the amount of data provided to each node, may be changed accordingly. Each subcarrier within a dedicated group of subcarriers may carry OAM or control channel information to a corresponding leaf node, and such information may be used by the leaf node to configure the leaf node to have a desired bandwidth or capacity.
Abstract:
Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor that receives data; circuitry that generate a plurality of electrical signals based on the data; a plurality of filters, each of which receiving a corresponding one of the plurality of electrical signals, a plurality of roll-off factors being associated with a respective one of the plurality of filters; a plurality of DACs that receive outputs from the digital signal processor, the outputs being indicative of outputs from the plurality of filters; a laser that supplies light; and a modulator that receives the light and outputs from the DACs, and supplies a plurality of optical subcarriers based on the outputs, such that one of the optical subcarriers has a frequency bandwidth that is wider than remaining ones of the optical subcarriers, said one of the optical subcarriers carrying information for clock recovery.
Abstract:
Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor that receives data; circuitry that generate a plurality of electrical signals based on the data; a plurality of filters, each of which receiving a corresponding one of the plurality of electrical signals, a plurality of roll-off factors being associated with a respective one of the plurality of filters; a plurality of DACs that receive outputs from the digital signal processor, the outputs being indicative of outputs from the plurality of filters; a laser that supplies light; and a modulator that receives the light and outputs from the DACs, and supplies a plurality of optical subcarriers based on the outputs, such that one of the optical subcarriers has a frequency bandwidth that is wider than remaining ones of the optical subcarriers, said one of the optical subcarriers carrying information for clock recovery.
Abstract:
A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced. As the bandwidth or capacity requirements of the leaf nodes change, the number of subcarriers, and thus the amount of data provided to each node, may be changed accordingly. Each subcarrier within a dedicated group of subcarriers may carry OAM or control channel information to a corresponding leaf node, and such information may be used by the leaf node to configure the leaf node to have a desired bandwidth or capacity.
Abstract:
Consistent with an aspect of the present disclosure, optical signals are transmitted that are modulated in accordance with an 8QAM modulation format. The optical signals carry symbols of data and may be represented by a constellation in the IQ plane that includes four inner points that are symmetrically arranged about the origin, and four outer points that are uniformly distributed about the origin, but rotated relative to the inner points. The rotation is toward inner points that represent symbols for which an erroneous transition between the outer points and such inner points is more likely to result in a single bit error, instead of two bit errors, because the symbol corresponding to the outer point and the symbol corresponding to such inner point differ by just one bit. Accordingly, a binary forward error correction algorithm may be employed to correct the errored bit. Such binary forward error correction operates with greater efficiency compared to symbol-wise error correction and thus additional noise can be tolerated by the optical receiver.
Abstract:
A device may insert a set of tones into a transmitter signal at a set of frequency offsets from a set of transmitter channels associated with a set of transmitter channel wavelengths. The set of transmitter channels may include a first channel being associated with a first quantity of bandwidth and a second channel associated with a second quantity of bandwidth. The first quantity of bandwidth may be different from the second quantity of bandwidth. The device may repeatedly adjust the transmitter signal to align the set of transmitter channel wavelengths based on a set of observed responses to the set of tones, generated based on the transmitter signal passing through an optical filter, failing to match a set of expected responses.
Abstract:
An optical system may have an optical transmitter including a digital signal processor to receive a signal channel, determine a digital signal associated with the signal channel based on information in a look-up table and based on a test tone, and output the digital signal. The optical system may further have a digital-to-analog converter to convert the digital signal to an analog signal, a laser to provide an optical signal, and a modulator to receive the optical signal and the analog signal, and modulate the optical signal based on the analog signal to form a modulated optical signal. The optical system may also have a photodiode to convert the modulated optical signal to a digital signal, a tone detector to detect the test tone based on the digital signal, and a controller to modify the information in the look-up table based on the test tone.
Abstract:
Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor that receives data; circuitry that generate a plurality of electrical signals based on the data; a plurality of filters, each of which receiving a corresponding one of the plurality of electrical signals, a plurality of roll-off factors being associated with a respective one of the plurality of filters; a plurality of DACs that receive outputs from the digital signal processor, the outputs being indicative of outputs from the plurality of filters; a laser that supplies light; and a modulator that receives the light and outputs from the DACs, and supplies a plurality of optical subcarriers based on the outputs, such that one of the optical subcarriers has a frequency bandwidth that is wider than remaining ones of the optical subcarriers, said one of the optical subcarriers carrying information for clock recovery.
Abstract:
A hub node may or have a capacity greater than that of associated leaf nodes. Accordingly, inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, each connection including one or more segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator. As the capacity requirements of the leaf nodes change, the number of subcarriers associated with, and thus the amount of data provided to, each node, may be changed accordingly.
Abstract:
A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced. As the bandwidth or capacity requirements of the leaf nodes change, the number of subcarriers, and thus the amount of data provided to each node, may be changed accordingly. Each subcarrier within a dedicated group of subcarriers may carry OAM or control channel information to a corresponding leaf node, and such information may be used by the leaf node to configure the leaf node to have a desired bandwidth or capacity.