Abstract:
An integral system for testing integrated circuits (ICs) mounted on an assembly strip after lead formation and before separation from the assembly strip. The ICs are arranged in rows and columns on each assembly strip such that the sides of each IC are connected to leads extending from the assembly strip, and the ends of each IC are held by the assembly strip. The strips are loaded into the system and passed to a first station at which leads are cut and formed while the ends of each IC remain connected to the assembly strip. The assembly strips are then passed to a test apparatus that transmits test signals to the ICs through the formed leads. The IC devices are then separated from the assembly strip using a singulation apparatus, and the separated ICs are stored in tubes for delivery. Visual inspection is also performed at various stages.
Abstract:
A method for testing integrated circuits (ICs) mounted on an assembly strip after lead formation and before separation from the assembly strip. The ICs are arranged in rows and columns on each assembly strip such that the sides of each IC are connected to leads extending from the assembly strip, and the ends of each IC are held by the assembly strip. The strips are loaded into the system and passed to a first station at which leads are cut and formed while the ends of each IC remain connected to the assembly strip. The assembly strips are then passed to a test apparatus that transmits test signals to the ICs through the formed leads. The IC devices are then separated from the assembly strip using a singulation apparatus, and the separated ICs are stored in tubes for delivery. Visual inspection is also performed at various stages.
Abstract:
A vision system that compares the captured images of a die and a lead frame loaded in a die bonding apparatus with stored images thereof, and interrupts the die bonding process when the captured images fail to match the stored images. The images are directed to distinctive features of the die (e.g., the positioning and size of the die bonding pads) and lead frame (e.g., positioning and size of the leads) that differ between various die and lead frames having similar sizes. A first camera captures the lead frame image, and a second camera captures the die image. The captured die and lead frame images are digitized and passed to a computer, which compares the captured images with previously stored images. When a mismatch is detected, the computer generates an error signal that shuts down the die bonding apparatus.