Abstract:
This disclosure describes systems, methods, and devices related to clock gating. A device may detect that gating of a local clock of a computer core is enabled; detect, based on the detection that the gating is enabled, that a clock gating condition for the local clock is satisfied; and set a clock gating polarity of the local clock based on the detection that the clock gating condition for the local clock is satisfied.
Abstract:
This disclosure describes systems, methods, and devices related to clock gating. A device may detect that gating of a local clock of a computer core is enabled; detect, based on the detection that the gating is enabled, that a clock gating condition for the local clock is satisfied; and set a clock gating polarity of the local clock based on the detection that the clock gating condition for the local clock is satisfied.
Abstract:
An apparatus includes a first device with a metal gate and a drain well that experiences a series resistance that drops a drain contact voltage from 10 V to 4-6 V at a junction between the drain well and a channel under the gate. The apparatus includes an interlayer dielectric layer (ILD0) disposed above and on the drain well and a salicide drain contact in the drain well. The apparatus also includes a subsequent device that is located in a region different from the first device that operates at a voltage lower than the first device.
Abstract:
Techniques and circuitry are disclosed for implementing non-volatile storage that exploit bias temperature instability (BTI) effects of high-k/metal-gate n-type or p-type metal oxide semiconductor (NMOS or PMOS) transistors. A programmed bitcell of, for example, a memory or programmable logic circuit exhibits a threshold voltage shift resulting from an applied programming bias used to program bitcells. In some cases, applying a first programming bias causes the device to have a first state, and applying a second programming bias causes the device to have a second state that is different than the first state. Programmed bitcells can be erased by applying an opposite polarity stress, and re-programmed through multiple cycles. The bitcell configuration can be used in conjunction with column/row select circuitry and/or readout circuitry, in accordance with some embodiments.
Abstract:
An apparatus includes a first device with a metal gate and a drain well that experiences a series resistance that drops a drain contact voltage from 10 V to 4-6 V at a junction between the drain well and a channel under the gate. The apparatus includes an interlayer dielectric layer (ILD0) disposed above and on the drain well and a salicide drain contact in the drain well. The apparatus also includes a subsequent device that is located in a region different from the first device that operates at a voltage lower than the first device.
Abstract:
An apparatus includes a first device with a metal gate and a drain well that experiences a series resistance that drops a drain contact voltage from 10 V to 4-6 V at a junction between the drain well and a channel under the gate. The apparatus includes an interlayer dielectric layer (ILD0) disposed above and on the drain well and a salicide drain contact in the drain well. The apparatus also includes a subsequent device that is located in a region different from the first device that operates at a voltage lower than the first device.