Abstract:
A phase-change memory cell having a reduced electrode-chalcogenide interface resistance and a method for making the phase-change memory cell are disclosed: An interface layer is formed between an electrode layer and a chalcogenide layer that and provides a reduced resistance between the chalcogenide-based phase-change memory layer and the electrode layer. Exemplary embodiments provide that the interface layer comprises a tungsten carbide, a molybdenum carbide, a tungsten boride, or a molybdenum boride, or a combination thereof. In one exemplary embodiment, the interface layer comprises a thickness of between about 1 nm and about 10 nm.
Abstract:
A phase-change memory cell having a reduced electrode-chalcogenide interface resistance and a method for making the phase-change memory cell are disclosed: An interface layer is formed between an electrode layer and a chalcogenide layer that and provides a reduced resistance between the chalcogenide-based phase-change memory layer and the electrode layer. Exemplary embodiments provide that the interface layer comprises a tungsten carbide, a molybdenum carbide, a tungsten boride, or a molybdenum boride, or a combination thereof. In one exemplary embodiment, the interface layer comprises a thickness of between about 1 nm and about 10 nm.
Abstract:
A phase-change memory cell having a reduced electrode-chalcogenide interface resistance and a method for making the phase-change memory cell are disclosed: An interface layer is formed between an electrode layer and a chalcogenide layer that and provides a reduced resistance between the chalcogenide-based phase-change memory layer and the electrode layer. Exemplary embodiments provide that the interface layer comprises a tungsten carbide, a molybdenum carbide, a tungsten boride, or a molybdenum boride, or a combination thereof In one exemplary embodiment, the interface layer comprises a thickness of between about 1 nm and about 10 nm.