Abstract:
Apparatus and methods implementing a hardware queue management device for reducing inter-core data transfer overhead by offloading request management and data coherency tasks from the CPU cores. The apparatus include multi-core processors, a shared L3 or last-level cache (“LLC”), and a hardware queue management device to receive, store, and process inter-core data transfer requests. The hardware queue management device further comprises a resource management system to control the rate in which the cores may submit requests to reduce core stalls and dropped requests. Additionally, software instructions are introduced to optimize communication between the cores and the queue management device.
Abstract:
Apparatus and methods implementing a hardware queue management device for reducing inter-core data transfer overhead by offloading request management and data coherency tasks from the CPU cores. The apparatus include multi-core processors, a shared L3 or last-level cache (“LLC”), and a hardware queue management device to receive, store, and process inter-core data transfer requests. The hardware queue management device further comprises a resource management system to control the rate in which the cores may submit requests to reduce core stalls and dropped requests. Additionally, software instructions are introduced to optimize communication between the cores and the queue management device.
Abstract:
Described embodiments classify packets received by a network processor. A processing module of the network processor generates tasks corresponding to each received packet. A scheduler generates contexts corresponding to tasks received by the packet classification processor from corresponding processing modules, each context corresponding to a given flow, and stores each context in a corresponding per-flow first-in, first-out buffer of the scheduler. A packet modifier generates a modified packet based on threads of instructions, each thread of instructions corresponding to a context received from the scheduler. The modified packet is generated before queuing the packet for transmission as an output packet of the network processor, and the packet modifier processes instructions for generating the modified packet in the order in which the contexts were generated for each flow, without head-of-line blocking between flows. The modified packets are queued for transmission as an output packet of the network processor.
Abstract:
Apparatus and methods implementing a hardware queue management device for reducing inter-core data transfer overhead by offloading request management and data coherency tasks from the CPU cores. The apparatus include multi-core processors, a shared L3 or last-level cache (“LLC”), and a hardware queue management device to receive, store, and process inter-core data transfer requests. The hardware queue management device further comprises a resource management system to control the rate in which the cores may submit requests to reduce core stalls and dropped requests. Additionally, software instructions are introduced to optimize communication between the cores and the queue management device.