Abstract:
Circuitry to provide a supply voltage. A voltage regulator is coupled to receive a target reference signal. The voltage regulator generates a supply voltage (Vtt) and is coupled to receive the supply voltage as an input signal. An upper limit comparator receives an upper limit voltage signal that is higher than the target reference voltage signal and the supply voltage to generate a “too high” signal when the supply voltage exceeds an upper threshold. A lower limit comparator receives a lower limit voltage signal that is lower than the target reference voltage signal and the supply voltage to generate a “too low” signal when the supply voltage is below a lower threshold. A pull up current source is coupled to pull the supply voltage up in response to the too low signal. A pull down current source is coupled to pull the supply voltage down in response to the too high signal.
Abstract:
A scheme intelligently balances existing TM0 resources to simultaneously boost both AC and DC power delivery topologies without incurring a penalty on either area or IR drop. TM0 tracks are either regular or staples. Regular tracks are continuous across the width of an active silicon. Staples are located right under the respective TM1 (Top Metal 1) tracks. TM1 is above TM0 in the hierarchy of metal layers. The staples aid in increasing the total TV0 (Top Via 0 that connects TM0 to TM1) density for all supplies simultaneously as they are consecutively track-shared between the TM1 tracks. This boost in via density helps reduce the net series resistance of the MIM capacitor as the Manhattan (displacement) distance between the supply and ground vias is now reduced. The outcome is a high-density high-bandwidth MIM capacitor, located between the main power distribution layers in the die metal stack—TM0 and TM1.
Abstract:
A scheme intelligently balances existing TM0 resources to simultaneously boost both AC and DC power delivery topologies without incurring a penalty on either area or IR drop. TM0 tracks are either regular or staples. Regular tracks are continuous across the width of an active silicon. Staples are located right under the respective TM1 (Top Metal 1) tracks. TM1 is above TM0 in the hierarchy of metal layers. The staples aid in increasing the total TV0 (Top Via 0 that connects TM0 to TM1) density for all supplies simultaneously as they are consecutively track-shared between the TM1 tracks. This boost in via density helps reduce the net series resistance of the MIM capacitor as the Manhattan (displacement) distance between the supply and ground vias is now reduced. The outcome is a high-density high-bandwidth MIM capacitor, located between the main power distribution layers in the die metal stack—TM0 and TM1.
Abstract:
Examples may include techniques for using a sample clock to measure a duty cycle by periodic sampling a target clock signal based on a prime number ratio of a reference clock frequency. The reference clock frequency used to set a measurement cycle time over which the duty cycle is to be measured. A magnitude of a duty cycle error as compared to a programmable target duty cycle is determined based on the measured duty cycle and the duty cycle is adjusted based, at least in part, on the magnitude of the duty cycle error.