Abstract:
An apparatus is provided for mitigating uncertainties in process, voltage, random, and systematic variations between first and second dies. The first die comprises a clock compensator to adjust one or more signal characteristics of an input clock, and to provide first and second clocks; a data transmitter to sample data with a version of the first clock and to transmit the sampled data to a data receiver of the second die, wherein the data receiver is to receive the sampled data and generate a received data; and a clock transmitter to transmit the second clock to a clock receiver of the second die, wherein the clock receiver is to generate a third clock, wherein a phase of the third clock is adjusted to generate a fourth clock, wherein a delayed version of the fourth clock is received by a sampler coupled to the data receiver to sample the received data.
Abstract:
An apparatus is provided which comprises: a receiver to receive a differential clock; a delay locked loop (DLL) coupled to the receiver; a first phase interpolator (PI) coupled to the DLL, the first PI to provide a first clock phase; a second PI coupled to the DLL, wherein the second PI is to provide a second or third clock phase; circuitry to adjust the first and second PIs according to the first clock phase, and the second or third clock phase.
Abstract:
An apparatus is provided which comprises: a receiver to receive a differential clock; a delay locked loop (DLL) coupled to the receiver; a first phase interpolator (PI) coupled to the DLL, the first PI to provide a first clock phase; a second PI coupled to the DLL, wherein the second PI is to provide a second or third clock phase; circuitry to adjust the first and second PIs according to the first clock phase, and the second or third clock phase.
Abstract:
An apparatus is provided for mitigating uncertainties in process, voltage, random, and systematic variations between first and second dies. The first die comprises a clock compensator to adjust one or more signal characteristics of an input clock, and to provide first and second clocks; a data transmitter to sample data with a version of the first clock and to transmit the sampled data to a data receiver of the second die, wherein the data receiver is to receive the sampled data and generate a received data; and a clock transmitter to transmit the second clock to a clock receiver of the second die, wherein the clock receiver is to generate a third clock, wherein a phase of the third clock is adjusted to generate a fourth clock, wherein a delayed version of the fourth clock is received by a sampler coupled to the data receiver to sample the received data.
Abstract:
Circuitry to provide a supply voltage. A voltage regulator is coupled to receive a target reference signal. The voltage regulator generates a supply voltage (Vtt) and is coupled to receive the supply voltage as an input signal. An upper limit comparator receives an upper limit voltage signal that is higher than the target reference voltage signal and the supply voltage to generate a “too high” signal when the supply voltage exceeds an upper threshold. A lower limit comparator receives a lower limit voltage signal that is lower than the target reference voltage signal and the supply voltage to generate a “too low” signal when the supply voltage is below a lower threshold. A pull up current source is coupled to pull the supply voltage up in response to the too low signal. A pull down current source is coupled to pull the supply voltage down in response to the too high signal.
Abstract:
An apparatus is provided for mitigating uncertainties in process, voltage, random, and systematic variations between first and second dies. The first die comprises a clock compensator to adjust one or more signal characteristics of an input clock, and to provide first and second clocks; a data transmitter to sample data with a version of the first clock and to transmit the sampled data to a data receiver of the second die, wherein the data receiver is to receive the sampled data and generate a received data; and a clock transmitter to transmit the second clock to a clock receiver of the second die, wherein the clock receiver is to generate a third clock, wherein a phase of the third clock is adjusted to generate a fourth clock, wherein a delayed version of the fourth clock is received by a sampler coupled to the data receiver to sample the received data.
Abstract:
An apparatus is provided for mitigating uncertainties in process, voltage, random, and systematic variations between first and second dies. The first die comprises a clock compensator to adjust one or more signal characteristics of an input clock, and to provide first and second clocks; a data transmitter to sample data with a version of the first clock and to transmit the sampled data to a data receiver of the second die, wherein the data receiver is to receive the sampled data and generate a received data; and a clock transmitter to transmit the second clock to a clock receiver of the second die, wherein the clock receiver is to generate a third clock, wherein a phase of the third clock is adjusted to generate a fourth clock, wherein a delayed version of the fourth clock is received by a sampler coupled to the data receiver to sample the received data.
Abstract:
An apparatus is provided for mitigating uncertainties in process, voltage, random, and systematic variations between first and second dies. The first die comprises a clock compensator to adjust one or more signal characteristics of an input clock, and to provide first and second clocks; a data transmitter to sample data with a version of the first clock and to transmit the sampled data to a data receiver of the second die, wherein the data receiver is to receive the sampled data and generate a received data; and a clock transmitter to transmit the second clock to a clock receiver of the second die, wherein the clock receiver is to generate a third clock, wherein a phase of the third clock is adjusted to generate a fourth clock, wherein a delayed version of the fourth clock is received by a sampler coupled to the data receiver to sample the received data.
Abstract:
An apparatus is provided for mitigating uncertainties in process, voltage, random, and systematic variations between first and second dies. The first die comprises a clock compensator to adjust one or more signal characteristics of an input clock, and to provide first and second clocks; a data transmitter to sample data with a version of the first clock and to transmit the sampled data to a data receiver of the second die, wherein the data receiver is to receive the sampled data and generate a received data; and a clock transmitter to transmit the second clock to a clock receiver of the second die, wherein the clock receiver is to generate a third clock, wherein a phase of the third clock is adjusted to generate a fourth clock, wherein a delayed version of the fourth clock is received by a sampler coupled to the data receiver to sample the received data.