Abstract:
Described is an apparatus which comprises: a first capacitor coupled to a first input pad; a second capacitor coupled to second input pad; a first resistor coupled to the second capacitor; a third capacitor coupled in series with the first resistor; a second resistor coupled in series with the third capacitor and also coupled to the first capacitor; and a differential amplifier coupled to the first and second capacitors and to the first and second resistors.
Abstract:
Described is an apparatus which comprises: an amplifier; and a passive continuous-time linear equalizer integrated with a baseline wander (BLW) corrector, wherein the integrated equalizer and BLW corrector is coupled to the amplifier.
Abstract:
Described is an apparatus which comprises: an amplifier; and a passive continuous-time linear equalizer integrated with a baseline wander (BLW) corrector, wherein the integrated equalizer and BLW corrector is coupled to the amplifier.
Abstract:
Embodiments described herein may be related to apparatuses, processes, and techniques related to packages that include CPUs and PICs electrically coupled via an interconnect bridge. In embodiments, the PIC are electrically coupled with the EMIB using a fan out RDL to extend reach of the PIC electrical connectors. EICs may be electrically coupled between the PIC and the interconnect bridge. The CPUs may be CPUS, graphical processing units (GPUs), field programmable gate arrays (FPGAs), or other processors. Other embodiments may be described and/or claimed.
Abstract:
Filter circuitry is provided for use with a light detection and ranging (Lidar) device implemented using silicon photonics. The filter circuitry includes high-pass filter circuitry to receive a signal from a photodetector of the lidar device and attenuate a lower frequency portion of the signal, where the lower frequency portion of the signal is the result of optical back reflections within the lidar device.
Abstract:
Methods, apparatuses, and systems are described herein to compensate for a skew effect that occurs in an optical signal generated in response to an electrical to optical (E/O) conversion of an electrical signal carrying data received from a driver. A skew control device coupled with a driver or a modulator provides a skew to the electric signal prior to E/O conversion to compensate for the skew effect. The skew may be provided by a reverse-biased p-n junction diode. Other embodiments may be described and/or claimed.
Abstract:
Embodiments may relate to a segment driver that is to be coupled with a modulator segment of a Mach-Zehnder modulator. The segment driver may include a continuous-time linear equalizer (CTLE) incorporated within an amplifier stage of the modulator. The CTLE may be configured to identify an electrical signal that is related to an optical signal of the Mach-Zehnder modulator; reduce inter-symbol interference (ISI) of the electrical signal to generate a processed electrical signal; and output the processed electrical signal to the amplifier stage. Other embodiments may be described or claimed.