Abstract:
A wireless service provider can route packets in a dual connectivity wireless system based on application (instead of solely on bearers). For example, an evolved Node B can split a bearer between a master eNB (MeNB) and a secondary wireless connection (such as a secondary eNB (SeNB)). User equipment (UE) can connect to a both a MeNB and a SeNB and split a bearer based on application type. Instead of basing data forwarding on a bearer, packet routing can be based on other attributes (such as IP address, application, application type, etc.). This dual connectivity allows MeNB to schedule data forwarding based on application. Data packets assigned to a bearer can be divided among the MeNB and SeNB based on desirable attributes of the MeNB and SeNB for an application.
Abstract:
A prioritized cell identification and measurement method is disclosed. The method classifies frequency layers to be monitored and measured by an user equipment into normal- and reduced-performance groups. Several different embodiments are described. Where appropriate, the corresponding signaling design is also suggested. User equipment can adopt one or several of these embodiments, and can change configurations in a semi-static manner based on operating conditions.
Abstract:
Technology for maintaining connectivity between a user equipment (UE) and a secondary (e)NodeB when connectivity is lost between the UE and a primary (e)NodeB is disclosed. The UE can start a first timer for monitoring a connection between the UE and the primary (e)NodeB. The UE can start a second timer for monitoring a connection between the UE and the secondary (e)NodeB. The UE can detect radio link failure (RLF) between the UE and the primary (e)NodeB after expiry of the first timer at the UE. The UE can maintain the connection with the secondary (e)NodeB while the second timer is unexpired, wherein the secondary (e)NodeB is configured to behave like the primary (e)NodeB or become the primary (e)NodeB depending on a capability of the UE and for a selected period of time after the connectivity between the UE and the primary (e)NodeB is lost.
Abstract:
User equipment (UE) handover (HO) techniques for reducing or eliminating interruption time during an HO process are described. In one embodiment, for example, an apparatus may include at least one memory and logic for an evolved node B (eNB), at least a portion of the logic comprised in hardware coupled to the at least one memory. The logic may be operative to forward downlink (DL) data received from a serving gateway (SGW) to user equipment (UE), transmit a handover command to the UE to trigger execution of a handover (HO) process to handover the UE to a target eNB, continue forwarding at least a portion of the DL data to the UE following transmission of the handover command, and terminate transmission of the DL data to the UE responsive to detecting a stop DL data event. Other embodiments are described and claimed.
Abstract:
Various embodiments may be generally directed to techniques for configuring a secondary RF chain of a mobile device—in particular, a secondary receiver chain—to perform wireless network measurements when the secondary RF chain is not used for data communications. Various embodiments provide for a primary RF chain to provide data communications with a wireless network and for the secondary RF chain to be capable of providing aggregated data communications with the wireless network. Various embodiments provide for the mobile device to determine that the wireless network does not support carrier aggregation and to reconfigure the secondary receiver chain, which would otherwise be left unused or inactive, to perform wireless network measurements. System throughout can be improved in comparison to using the primary RF chain for performing the wireless network measurements.
Abstract:
A user equipment (UE) is configured to send one or more service requests to a third party server via a mobile communications network, such as an evolved packet core (EPC). The UE is configured to determine that there is an error or delay in receiving a response to the one or more service requests from the third party server, and to send a wake-up request to a network element in the mobile communications network requesting notification when the third party server is available.