Abstract:
An antenna module for wireless communication comprises an antenna element, a first port and a second port. The antenna element comprises a first resonance frequency and a second resonance frequency. The first port is configured to receive or provide a first radio frequency signal with a first frequency range and the second port is configured to receive or provide a second radio frequency signal with a second frequency range. The first frequency range is different from the second frequency range. Further, the first resonance frequency is located in the first frequency range and the second resonance frequency is located in the second frequency range. The antenna element is configured to transmit or receive the first radio frequency signal and the second radio frequency signal simultaneously.
Abstract:
A cellular low band antenna is indirectly coupled to communication signals via a first coupler that is located within a same volume of a body as one or more wireless local area network (WLAN) antennas. Various antenna configurations can include the one or more WLAN antennas being indirectly coupled to communication signals via a second coupler within the same volume as the cellular low band antenna. A high band antenna is located in a different volume that is adjacent to the volume of the cellular low band antenna and the one or more WLAN antennas. Another similar antenna system can be provided in a separate volume for diversity communications in a communication device, such as a tablet, laptop or other such communication device.
Abstract:
Described are an antenna system for wireless communication and a method of configuration thereof. The antenna system can include a first radiator having a first resonance frequency, a second radiator having a second resonance frequency different from the first resonance frequency, a first electromagnetic coupler associated with the first radiator and a first frontend, a second electromagnetic coupler associated with the second radiator and a second frontend, and a switch. The switch can be configured to connect the first electromagnetic coupler and the second electromagnetic coupler in an inter antenna aggregation configuration in a first mode of operation. The switch can also be configured to connect the first electromagnetic coupler and the second electromagnetic coupler in an intra antenna aggregation configuration in a second mode of operation.
Abstract:
An apparatus and method to provide isolation between a first antenna and a second antenna, each of which is located on a ground plane. A slot that is tunable by a variable reactance is located on the ground plane, the slot not being appreciably resonant at the operating frequency of the first antenna and the second antenna. The antennas operate in an orthogonal mode. Varying the slot reactance varies the electrical distance over which the coupling current between the two antennas flows. Increased RF isolation to a desired magnitude results by maintaining the orthogonality at desired bands. The RF isolation can be measured and a departure from the desired magnitude of isolation causes the reactance to be varied to increase the RF isolation back to the desired magnitude. The antennas and the slot are placed at locations on the ground plane of high current density.
Abstract:
An antenna arrangement is provided. The antenna arrangement includes a first antenna element and a second antenna element. An inductance coil is coupled to the first antenna element and the second antenna element.
Abstract:
A first antenna element is indirectly coupled to communication signals via a coupler that is located within a same volume of a body. A second antenna element is proximate to and adjacent the first antenna element. The first antenna element is configured to operate in a first frequency range and the second antenna element is configured to operate within a subset of the first frequency range concurrent with or simultaneously to the first antenna element. The coupler can operate to couple multiple antenna elements operating at different frequencies within the same volume of the body.
Abstract:
Described is an antenna system for wireless communication. The antenna system can include a support plane; a first antenna element coupled to the support plane; and a second antenna element coupled to the support plane and positioned in balance with the first antenna. The support plane can include a slot that is configured to create a balanced relationship between the first and the second antenna elements. The system can include an electrical component connected across a width of the slot and configured to tune a current balance between the first and the second antenna elements.
Abstract:
Antenna systems that can include first and second radiators and an electromagnetic coupler disposed adjacent to the first and the second radiators. The radiators can be tunable to one or more frequencies. The electromagnetic coupler can be, for example, an inductive coupler or a capacitive coupler. One or more of the antenna systems can be configured to use carrier aggregation by tuning the first and/or the second radiators. For example, one or more of the antenna systems can be configured to use inter-band aggregation, intra-band contiguous aggregation, and intra-band non-contiguous aggregation.
Abstract:
A first antenna element is indirectly coupled to communication signals via a coupler that is located within a same volume of a body. A second antenna element is proximate to and adjacent the first antenna element. The first antenna element is configured to operate in a first frequency range and the second antenna element is configured to operate within a subset of the first frequency range concurrent with or simultaneously to the first antenna element. The coupler can operate to couple multiple antenna elements operating at different frequencies within the same volume of the body.
Abstract:
A cellular low band antenna is indirectly coupled to communication signals via a first coupler that is located within a same volume of a body as one or more wireless local area network (WLAN) antennas. Various antenna configurations can include the one or more WLAN antennas being indirectly coupled to communication signals via a second coupler within the same volume as the cellular low band antenna. A high band antenna is located in a different volume that is adjacent to the volume of the cellular low band antenna and the one or more WLAN antennas. Another similar antenna system can be provided in a separate volume for diversity communications in a communication device, such as a tablet, laptop or other such communication device.