Abstract:
Representative implementations of devices and techniques provide self-interference suppression for a transceiver of a wireless communication system. To minimize interference from a transmit signal appearing on a receive path of the system, a cross-correlation is minimized between the transmit signal and a desired receive signal.
Abstract:
Techniques are disclosed for providing isolation between a pair of partially overlapping antennas. An example electronic device includes a first antenna coupled to a first transceiver through a first signal path comprising a first feed, and a second antenna coupled to a second transceiver through a second signal path comprising a second feed. The first antenna and second antenna partially overlap. The example electronic device also includes compensation circuitry coupled to the first signal path and the second signal path and configured to generate a compensation signal that provides analog cancellation of an interference signal received at the second antenna from the first antenna.
Abstract:
Examples of a system and method for adaptively tuning a radio frequency (RF) front-end are generally described herein. In some examples, the frequency of a transmit signal of RF front-end circuitry is swept in at least a part of the RF transmit band. RF power in a receiver is detected as a function of the RF frequency of the transmit signal to determine a location of at least one tunable notch or other band stop element in the frequency domain. information from the detected RF power is determined as a function of the RF frequency of the transmit signal. The RF front-end circuitry is adjusted to a selected frequency response using the determined information.
Abstract:
Examples of a system and method for adaptively tuning a radio frequency (RF) front-end are generally described herein. In some examples, the frequency of a transmit signal of RF front-end circuitry is swept in at least a part of the RF transmit band. RF power in a receiver is detected as a function of the RF frequency of the transmit signal to determine a location of at least one tunable notch or other band stop element in the frequency domain. Information from the detected RF power is determined as a function of the RF frequency of the transmit signal. The RF front-end circuitry is adjusted to a selected frequency response using the determined information.
Abstract:
An apparatus and method to provide isolation between a first antenna and a second antenna, each of which is located on a ground plane. A slot that is tunable by a variable reactance is located on the ground plane, the slot not being appreciably resonant at the operating frequency of the first antenna and the second antenna. The antennas operate in an orthogonal mode. Varying the slot reactance varies the electrical distance over which the coupling current between the two antennas flows. Increased RF isolation to a desired magnitude results by maintaining the orthogonality at desired bands. The RF isolation can be measured and a departure from the desired magnitude of isolation causes the reactance to be varied to increase the RF isolation back to the desired magnitude. The antennas and the slot are placed at locations on the ground plane of high current density.
Abstract:
Examples of a system and method for adaptively tuning a radio frequency (RF) front-end are generally described herein. In some examples, the frequency of a transmit signal of RF front-end circuitry is swept in at least a part of the RF transmit band. RF power in a receiver is detected as a function of the RF frequency of the transmit signal to determine a location of at least one tunable notch or other band stop element in the frequency domain. Information from the detected RF power is determined as a function of the RF frequency of the transmit signal. The RF front-end circuitry is adjusted to a selected frequency response using the determined information.
Abstract:
Described herein are architectures, platforms and methods for electrically tuning radiators in a portable device. The electrical tuning implements platform independent radiating elements or antennas in a portable device.
Abstract:
Antenna systems that can include first and second radiators and an electromagnetic coupler disposed adjacent to the first and the second radiators. The radiators can be tunable to one or more frequencies. The electromagnetic coupler can be, for example, an inductive coupler or a capacitive coupler. One or more of the antenna systems can be configured to use carrier aggregation by tuning the first and/or the second radiators. For example, one or more of the antenna systems can be configured to use inter-band aggregation, intra-band contiguous aggregation, and intra-band non-contiguous aggregation.