Abstract:
Systems and methods described herein are provided for beamforming and uplink control and data transmission techniques. Such techniques enable a UE to maintain at least one beam process for operation with multiple beams and/or points. A beam process may be indicated for transmission or reception over a downlink or uplink physical channel. Power, timing, and channel state information may be specific to a beam process. A beam process may be established as part of a random access procedure in which resources may be provisioned in random access response messages. Techniques are provided to handle beam process failures, to use beam processes for mobility, and to select beams using open-loop and closed-loop selection procedures.
Abstract:
Systems, methods, and instrumentalities are described herein for data transfer with energy harvesting (EH). EH may offer zero-energy consumption data communication. EH may impose intermittent connection drops due to battery shortage. If a certain condition is met (e.g., battery shortage), the RRC state or DRX/DTX configuration may be switched and data transfer operation may be suspended. EH may be performed to charge the battery/capacitor of the WTRU in the changed RRC state (e.g., new RRC state) or in a changed DRX/DTX operation (e.g., new DRX/DTX operation). If the state is transitioned or the DRX/DTX configuration is changed, protocol times (e.g., via all protocol timers) may be suspended and the user data maintained so that the transmitter and the receiver entities may resume data communication without any data loss or with very small loss of data.
Abstract:
A WTRU may receive downlink control information (DCI) from a first transmission/reception (TRP). The DCI may indicate that the WTRU is to transmit a physical random access channel (PRACH) transmission. The DCI may include an indication of a preamble, an indication of a first PRACH mask, and/or an indication associated with a first synchronization signal block (SSB), and/or an indication of a reference signal (RS). The WTRU may be configured to transmit the preamble, to a second TRP, the preamble in a first PRACH resource. The first TRP and/or the second TRP may be associated with a same physical cell identity (PCI). The WTRU may receive, from the second TRP, a first response to the preamble. The first response may include a first timing advance (TA) command for the second timing alignment for transmission to the second TRP and/or an index indicating the second TRP.
Abstract:
A WTRU may receive downlink control information (DCI) from a first transmission/reception (TRP). The DCI may indicate that the WTRU is to transmit a physical random access channel (PRACH) transmission. The DCI may include an indication of a preamble, an indication of a first PRACH mask, and/or an indication associated with a first synchronization signal block (SSB), and/or an indication of a reference signal (RS). The WTRU may be configured to transmit the preamble, to a second TRP, the preamble in a first PRACH resource. The first TRP and/or the second TRP may be associated with a same physical cell identity (PCI). The WTRU may receive, from the second TRP, a first response to the preamble. The first response may include a first timing advance (TA) command for the second timing alignment for transmission to the second TRP and/or an index indicating the second TRP.
Abstract:
The disclosed method and an apparatus are directed to determine an uplink transmission power in in New Radio (NR) systems by a wireless transmit/receive unit (WTRU) for transmitting at least one physical uplink shared channel (PUSCH), using multiple beams toward multiple Tx/Rx points (TRPs). The method includes determining common parameters like a target receive power, a modulation and coding scheme (MCS) specific offset, and a transmit power control (TPC) command parameters common to the multiple beams. The method also includes determining beam-specific parameters like path loss for each beam, a configurable fractional power compensation factor for each beam, and a configurable maximum transmit power level of the each beam, wherein the fractional power compensation factor and the configurable maximum transmit power level for the each beam are determined dynamically or semi-statically based on at least deployment, WTRU mobility, or interference level. The method further includes transmitting at least one codeword to at least one receiving station using at least one of the multiple beams, which having a transmit power calculated based on the common parameters and the beam-specific parameters.
Abstract:
Methods and devices for offloading and/or aggregation of resources to coordinate uplink transmissions when interacting with different schedulers are disclosed herein. A method in a WTRU incudes functionality for coordinating with a different scheduler for each eNB associated with the WTRU's configuration. Disclosed methods include autonomous WTRU grand selection and power scaling, and dynamic prioritization of transmission and power scaling priority.
Abstract:
Methods and devices for offloading and/or aggregation of resources to coordinate uplink transmissions when interacting with different schedulers are disclosed herein. A method in a WTRU incudes functionality for coordinating with a different scheduler for each eNB associated with the WTRU's configuration. Disclosed methods include autonomous WTRU grand selection and power scaling, and dynamic prioritization of transmission and power scaling priority.
Abstract:
A method and apparatus for determining a vertical beam for reception are disclosed herein. A method in a wireless transmit/receive unit (WTRU) includes that the WTRU may receive a broadcast message from an evolved Node B (eNB) that includes information associated with a plurality of beam reference signals, wherein the information includes at least one set of Physical Random Access Control Channel (PRACH) resources associated with each of the plurality of beam reference signals. Further, the WTRU may measure reference signals transmitted on each of the plurality of beam reference signals. Then, the WTRU may select a beam reference signal from among the plurality of beam reference signals. In addition, the WTRU may transmit a PRACH preamble in a set of resources associated with the selected beam reference signal. The WTRU may then receive further communications from the eNB.
Abstract:
Methods and apparatus for mitigating in-device interference are described. The methods may include an in-device interference event (e.g. an interference situation), and the processing of events may depend on the priority of the technologies. A handover to another frequency or radio access technology (RAT) may occur in case a co-existing technology may be activated. The network may signal to the device a list of frequencies or RATs that it may be allowed to measure and handoff to. A network may provide a scaling value that the device may use to speed up reaction to the interference. The device may apply a scaling factor to an “out of synch’ counter and/or the radio link failure (RLF) tinier used for the RLF procedure. The device may apply different scaling factors for the measurements and time to trigger events. The device may trigger a report to the network requesting gaps for an alternate RAT.
Abstract:
A method and apparatus for power control for wireless transmissions on multiple component carriers corresponding to multiple serving cells associated with multiple timing advances are disclosed. A wireless transmit/receive unit (WTRU) may determine transmit powers for a first physical channel for a first serving cell in a first timing advanced group (TAG) and a second physical channel for a second serving cell in a second TAG. The first TAG may less timing advanced than the second TAG. The WTRU may determine a WTRU configured maximum output power (PCMAX) for an overlapping portion, which may be a portion of a transmission of the first channel in a first subframe that overlaps in time with a portion of a transmission of the second channel in a next subframe. The WTRU may adjust the channels such that a sum of their transmit powers in the overlapping portion does not exceed the determined PCMAX.