摘要:
In an approach, a processor trains a statistical classifier and a set of micro classifiers. A processor receives an input to be classified by the statistical classifier. A processor receives a label assigned to the input by the statistical classifier and respective labels assigned by each micro classifier of the set of micro classifiers. A processor determines that the label assigned by the statistical classifier is the same as at least one label assigned by at least one micro classifier of the set of micro classifiers. A processor generates a natural language explanation for assigning the label using the at least one micro classifier and the label. A processor outputs the label and the natural language explanation to a user of a computing device. A processor receives user feedback from the user in the form of an acceptance or a rejection of the natural language explanation.
摘要:
Embodiments for implementing intelligent customer journey prediction and customer segmentation of a processor in a computing environment. A response outcome of a customer journey for a user may be predicted according to an assigned score based on one or more discriminatory sequence patterns identified between one or more groups of customers using one or more machine learning operations.
摘要:
Systems, methods, and computer-readable media are described for automatically identifying potential errors in the text output of a domain-agnostic speech-to-text engine and generating text snippets that contain words representative of the potential errors and other words in the neighborhoods of such words for context. In this manner, a substantially reduced amount of text (i.e., the text snippets) can be reviewed for errors in the speech-to-text conversion rather than the entire text output, thereby significantly reducing the burden associated with error identification in the text output.
摘要:
Middleboxes include a processor configured to determine that a network connection between a client device and a server device is idle. A connection table is configured to create a first connection entry at the middlebox for the client device and a second connection entry at the middlebox for the server device. The first and second connection entries are initialized after determining that the network connection between the client device and the server device is idle. A network control module is configured to activate redirection of the network connection between the client device and the server device to the middlebox after determining that the network connection between the client device and the server device is idle.
摘要:
Various embodiments provide byte caching in wireless communication networks. In one embodiment, a plurality of data packets are received through an internet protocol (IP) data flow established between a wireless communication device and at least one server. Each of the plurality of data packets are combined into a packet bundle. A determination is made as to whether a second byte caching system is available. The packet bundle is transformed using one or more byte caching operations based on a second byte caching system being available. The transformed packet bundle is sent to the second byte caching system using an IP communication mechanism.
摘要:
Embodiments relate to reconciling different entity identifiers. A method of reconciling different entity identifiers of a same entity is provided. The method receives a plurality of series of location-time data items from a plurality of tracking systems that each track one or more entities. Each series of location-time data items is associated with an entity identifier. The method categorizes each location-data item into a space-time region. The method generates a track for each of the plurality of series of location-time data items based on the space-time regions into which the location-data items are categorized, and generates a track signature for each of the generated tracks based on a segment of the generated track. The method compares the track signatures to find matching track signatures. Based on a plurality of matching signatures, the method reconciles the plurality of entity identifiers associated with the plurality of matching signatures to a particular entity.
摘要:
Various embodiments provide byte caching in wireless communication networks. In one embodiment, a plurality of data packets are received through an internet protocol (IP) data flow established between a wireless communication device and at least one server. Each of the plurality of data packets are combined into a packet bundle. A determination is made as to whether a second byte caching system is available. The packet bundle is transformed using one or more byte caching operations based on a second byte caching system being available. The transformed packet bundle is sent to the second byte caching system using an IP communication mechanism.
摘要:
A mechanism is provided in a data processing system for matching data to a dynamic set of signatures. The mechanism creates a state transition, result, and mask (STR&M) table based on a set of signatures. The mechanism executes scanner code in each of a plurality of hardware devices in parallel to form a plurality of matching engines. The mechanism loads the STR&M table into each of the plurality of matching engines. Responsive to receiving a plurality of input records, the mechanism distributes input strings from the plurality of input records among the plurality of matching engines and receiving signature set match results from the plurality of matching engines.
摘要:
Traffic engineering of cloud services include receiving, by an enterprise network agent of an enterprise network, a policy from an operator of the enterprise network and transmitting, by a processor, the policy to a cloud service provider. Aspects also include monitoring an incoming traffic to the enterprise network from the cloud service provider and collecting data regarding the incoming traffic and transmitting collected data regarding the incoming traffic to the cloud service provider.
摘要:
Various embodiments detecting wireless communication device mobility in a wireless communication network. In one embodiment, one or more Internet Protocol (IP) data packets associated with a wireless communication device are analyzed. The wireless communication device is coupled with the edge entity. A determination is made, based on the analyzing, that the wireless communication device is a newly coupled device at the edge entity. A central entity disposed within the wireless communication network is notified that the wireless communication device is currently coupled to the edge entity.