Abstract:
Provided is a method, computer program product, and system for transferring data between block and file storage systems. A remote server may receive, from a host device, a request to restore data to the host device. The remote server may store the data as one or more objects, with each object corresponding to an extent of a logical volume on the host device. A set of strides on the host device that correspond to the one or more objects may be determined using metadata for the one or more objects. Each of the one or more objects may be split into a set of data pieces using the metadata. Each data piece may then be transmitted from the remote server to the host device.
Abstract:
Provided are a computer program product, system, and method for generating data structure to maintain error and connection information on components and use the data structure to determine an error correction operation. For each of a plurality of first level components in enclosures connected to second level components, errors at the first level component and a connection between the first level component to one of the second level components are determined and error variables are set to indicate whether an error was reported at the first level component. A data structure is generated indicating connections among the first level components and the second level components. The error variable values and the data structure are used to determine an error correction operation with respect to at least one of the first level component and the connected second level component.
Abstract:
Embodiments of the present invention provide systems and methods for dynamically modifying data scrub rates based on RAID analysis. The method includes determining a grouping for an array based on a temperature for the array, a configurable threshold temperature range for the array, and an I/O distribution of the array. The method further includes modifying the data scrub rate for the array based on the grouping.
Abstract:
Embodiments of the present invention provide systems and methods for dynamically modifying data scrub rates based on RAID analysis. The method includes determining a grouping for an array based on a temperature for the array, a configurable threshold temperature range for the array, and an I/O distribution of the array. The method further includes modifying the data scrub rate for the array based on the grouping.
Abstract:
A method for allocating cache for a disk array includes monitoring an I/O distribution of the disk array in a predetermined time period, determining a garbage collection state of the disk array, the garbage collection state allows the disk array to perform a garbage collection and prevents the disk array to perform the garbage collection, and determining an allocation of the cache based on the I/O distribution and the garbage collection state.
Abstract:
According to one embodiment, a method includes initiating a rebuild process in a storage system having at least one solid state drive, obtaining a bitmap indicating which blocks of data are in a garbage collection process, determining which blocks of data are in the garbage collection process using the bitmap, accessing the blocks of data that are not in the garbage collection process, not accessing the blocks of data that are in the garbage collection process, and performing the rebuild process using the blocks of data that are not in the garbage collection process.
Abstract:
A processor may receive a request to transmit a logical volume to a cloud-based server. The logical volume may be stored in a data storage subsystem that includes one or more ranks. Each rank may include one or more extents, which may include one or more stride. The processor may determine an extent of the one or more extents that includes data of the logical volume. The processor may determine a set of strides associated with the extent. The processor may copy the set of strides into a stride buffer and combine the set of strides into a block extent file. The processor may transmit the block extent file to the cloud server.
Abstract:
A data processing apparatus-implemented method, according to one embodiment, includes selecting blocks of data in at least one solid state drive for garbage collection in a garbage collection process, and creating a bitmap indicating which blocks of data are in the garbage collection process. The bitmap has a two bit structure for each of the blocks, where the two bit structure includes a unique pair of bits associated with a logical block address (LBA) of the individual one of the blocks associated with the two bit structure. One bit indicates whether the block is in the garbage collection process. The other bit indicates whether rebuilding of the block has been completed.
Abstract:
Provided are a computer program product, system, and method for generating data structure to maintain error and connection information on components and use the data structure to determine an error correction operation. For each of a plurality of first level components in enclosures connected to second level components, errors at the first level component and a connection between the first level component to one of the second level components are determined and error variables are set to indicate whether an error was reported at the first level component. A data structure is generated indicating connections among the first level components and the second level components. The error variable values and the data structure are used to determine an error correction operation with respect to at least one of the first level component and the connected second level component.
Abstract:
Provided are a computer program product, system, and method for generating data structure to maintain error and connection information on components and use the data structure to determine an error correction operation. For each of a plurality of first level components in enclosures connected to second level components, errors at the first level component and a connection between the first level component to one of the second level components are determined and error variables are set to indicate whether an error was reported at the first level component. A data structure is generated indicating connections among the first level components and the second level components. The error variable values and the data structure are used to determine an error correction operation with respect to at least one of the first level component and the connected second level component.