Abstract:
This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to novel substitution mutant receptors and their use in a Group H nuclear receptor-based inducible gene expression system and methods of modulating the expression of a gene in a host cell for applications such as gene therapy, large scale production of proteins and antibodies, cell-based high throughput screening assays, functional genomics and regulation of traits in transgenic organisms.
Abstract:
This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to novel nuclear receptors comprising a substitution mutation and their use in a nuclear receptor-based inducible gene expression system and methods of modulating the expression of a gene within a host cell using this inducible gene expression system.
Abstract:
The present invention relates to the field of biotechnology or genetic engineering. More specifically, the present invention relates to a multiple inducible gene regulation system that functions within cells to simultaneously control the quantitative expression of multiple genes.
Abstract:
This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to novel nuclear receptors comprising a substitution mutation and their use in a nuclear receptor-based inducible gene expression system and methods of modulating the expression of a gene within a host cell using this inducible gene expression system.
Abstract:
This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to a novel ecdysone receptor/chimeric retinoid X receptor-based inducible gene expression system and methods of modulating gene expression in a host cell for applications such as gene therapy, large-scale production of proteins and antibodies, cell-based high throughput screening assays, functional genomics and regulation of traits in transgenic organisms.
Abstract:
This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to a novel ecdysone receptor/chimeric retinoid X receptor-based inducible gene expression system and methods of modulating gene expression in a host cell for applications such as gene therapy, large-scale production of proteins and antibodies, cell-based high throughput screening assays, functional genomics and regulation of traits in transgenic organisms.
Abstract:
The present invention relates to the field of biotechnology or genetic engineering. More specifically, the present invention relates to a multiple inducible gene regulation system that functions within cells to simultaneously control the quantitative expression of multiple genes.