Abstract:
Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
Abstract:
A system includes first and second manipulating means, and a means for detecting mounting of an imaging means to the first manipulating means, a means for determining a first reference frame for the imaging means while the imaging means is mounted to the first manipulating means, a means for controlling a tool means relative to the first reference frame by maintaining a position and orientation of a distal portion of the tool means relative to the imaging means in the first reference frame based on a position and orientation of an input means relative to a display means, a means for detecting mounting of the imaging means to the second manipulating means, a means for determining a second reference frame for the imaging means while the imaging means is mounted to the second manipulating means, and a means for controlling the tool means relative to the second reference frame.
Abstract:
Teleoperated control includes commanding, in response to a first input to move a tool while an imaging device is mounted to a first manipulator and a tool is mounted to a second manipulator, actuator(s) of the second manipulator to move the tool with a first motion relative to a first reference frame that corresponds with a first movement of an input device relative to a display, the first reference frame defined based on the imaging device mounted to the first manipulator; and commanding, in response to receiving a second input to move the tool while the imaging device is mounted to the third manipulator, the actuator(s) to move the tool with a second motion relative to a second reference frame that corresponds with a second movement of the input device relative to the display, the second reference frame defined based on the imaging device being mounted to the third manipulator.
Abstract:
A sterile adapter for coupling a surgical instrument and a surgical instrument manipulator includes a bottom component and a coupling component. The bottom component includes a bottom component opening with a bottom lip having a locking mechanism. The coupling component is rotatably coupled to the bottom component. The coupling component includes an engagement feature that engages the surgical instrument manipulator. The coupling component further includes a locking mechanism opening that engages the locking mechanism when the engagement feature has not engaged the surgical instrument manipulator. The coupling component may include a retention tab that is aligned with the keyway to insert the coupling component into the bottom component opening and then misaligned with the keyway to retain the coupling component in the bottom component opening. A ramp may be provided on a leading edge of a pocket to facilitate engaging the coupling component with the surgical instrument manipulator.
Abstract:
Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.