Abstract:
Techniques for multi-mode imaging device control include determining, by a controller, if an orientational mode command or a translational mode command is entered; in response to determining that the orientational mode command is entered, constraining, by the controller, movement of an imaging device so that a focal point of the imaging device moves along a concave virtual surface in response to translational movement of one or more input devices; and in response to determining that the translational mode command is entered, causing, by the controller, translational movement of the imaging device in a three-dimensional space in response to the translational movement of the one or more input devices.
Abstract:
Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
Abstract:
Techniques for controlling a moveable component include a moveable component and a controller. The controller is configured to control motion of the moveable component according to a state machine comprising a first and second state. In the first state, the controller holds the moveable component at a current position. The controller transitions the state machine from the first state to the second state in response to detecting a displacement of the moveable component, due to a disturbance, from the current position for longer than a first predetermined duration of time. In the second state, the controller commands the moveable component to perform a motion. The controller remains in the second state until a stop condition is detected, even if the disturbance ends before the stop condition is detected. The controller transitions the state machine from the second state to the first state in response to detecting the stop condition.
Abstract:
In a coupled control mode, an operator directly controls movement of an associated manipulator with an input device while indirectly controlling movement of one or more non-associated manipulators, in response to commanded motion of the directly controlled manipulator, to achieve a secondary objective. By automatically performing secondary tasks through coupled control modes, the system's usability is enhanced by reducing the operator's need to switch to another direct mode to manually achieve the desired secondary objective. Thus, coupled control modes allow the operator to better focus on performing tasks and to pay less attention to managing the system.
Abstract:
A medical robotic system having non-ideal actuator-to-joint linkage characteristics, includes a control system including a proximal control loop with actuator sensor feedback to control dynamic response of an actuator coupled to a distal joint which in turn, is coupled to an end effector to provide a degree of freedom movement of the end effector, a distal control loop with distal joint sensor feedback and feedforward to the actuator to ensure steady-state convergence of the distal joint position, and an end effector control loop with end-point sensor feedback to control the end effector position to reach a commanded end effector position.
Abstract:
Techniques for controlling a manipulator assembly include one or more actuators coupled to drive the manipulator assembly to move at least a portion of the manipulator assembly and a controller. The controller is configured to cause the one or more actuators to hold the portion at a first position in a sequence of predetermined positions; detect that the portion has been moved from the first position due to a disturbance; in response to the detection that the portion has been moved from the first position, cause the one or more actuators to move the portion toward a second position in the sequence of predetermined positions until a stop condition is detected, even if the disturbance ends before the portion reaches the second position; and cause the one or more actuators to hold the portion at the second position, when the portion has reached the second position.
Abstract:
Techniques for retracting an instrument into an entry guide include receiving a retraction command for the instrument, the retraction command commanding movement of the instrument into the entry guide; causing, in response to the retraction command and using an instrument manipulator, movement of a rotational joint of the instrument that is external to the entry guide toward a distal end of the entry guide; actuating, after the rotational joint reaches a minimum distance from the distal end of the entry guide, the rotational joint to orient a link of the instrument so that the link can be retracted into the entry guide, the link being adjacent to and distal to the rotational joint; and causing, after the link is oriented so that the link can be retracted into the entry guide and using the instrument manipulator, further movement of the rotational joint toward the distal end of the entry guide.
Abstract:
A method of operating a manipulator arm comprising a manipulator interface configured to removably couple with and transmit actuation force to a medical instrument includes mounting a cannula to a cannula mount coupled to the manipulator arm; mounting a medical instrument to the manipulator interface; inserting a shaft of the medical instrument through an entry guide mounted to the cannula; rotating the manipulator interface and the medical instrument relative to the cannula mount; and rotating the entry guide relative to the cannula mount about a longitudinal axis of the cannula.
Abstract:
A system includes first and second manipulating means, and a means for detecting mounting of an imaging means to the first manipulating means, a means for determining a first reference frame for the imaging means while the imaging means is mounted to the first manipulating means, a means for controlling a tool means relative to the first reference frame by maintaining a position and orientation of a distal portion of the tool means relative to the imaging means in the first reference frame based on a position and orientation of an input means relative to a display means, a means for detecting mounting of the imaging means to the second manipulating means, a means for determining a second reference frame for the imaging means while the imaging means is mounted to the second manipulating means, and a means for controlling the tool means relative to the second reference frame.
Abstract:
Systems and methods for a system include a manipulator configured to support an instrument moveable within an instrument workspace, the instrument having an instrument frame of reference; an input device configured to receive a movement command from an operator; and a control system. The control system is configured to determine a difference between an orientation of the instrument and an orientation of a field of view of the instrument workspace; adjust, based on the difference, a mapping to apply to the movement command to generate an implementable movement command for the instrument; further adjust the mapping based on an ergonomic offset to provide for a difference between an orientation of the input device and the orientation of the instrument; map, based on the adjusted mapping, the movement command to a motion of the instrument in the instrument frame of reference; and cause the instrument to move according to the motion.