摘要:
The invention relates to a process for combustion of a fuel with an oxygen-rich oxidant, in a combustion chamber (3), in which, cyclically: at least one principal variable representing the combustion in the said combustion chamber (3) is measured, and, as a function of the result of the measurement of the at least one principal variable, a control instruction for regulating the flowrates of fuel and oxidant to be injected into the combustion chamber (3) is determined. Then the regulating control instruction is applied in order to make the fuel burn with the oxidant in the chamber (3). Additionally at least one secondary variable associated with an operational constraint of the combustion chamber (3) or with a perturbation in the operation of the latter is measured, and for the determination of regulating control instruction, the measurement result of the at least one secondary variable is also taken into account. The invention is useful in glass furnaces, rotary furnaces, and incineration furnaces.
摘要:
The invention relates to a burning method carried out in furnace provided with energy recovering means and burners, wherein a part of burners are embodied in the form of aero-combustible burners and the other part thereof are embodied in the form of oxy-combustible burners which are placed under the air ducts of the aero-combustible burners and carry out a staged combustion method.
摘要:
The invention relates to a method for controlling the forming of flat glass by conducting molten glass over a liquid tin layer in a forming vat. According to said method, the concentration of H20 above the surface of the glass during the forming process is measured by means of at least one laser diode.
摘要翻译:本发明涉及通过在成型槽中的液态锡层上导电熔融玻璃来控制平板玻璃的形成的方法。 根据所述方法,通过至少一个激光二极管测量在成型过程中在玻璃表面上方的H 2 O 2浓度。
摘要:
Burner firing method and device are presented where an oxidizing oxygen-fuel burner is fired at an angle to the reducing air-fuel burner flame to reduce overall NOx emissions from high temperature furnaces. The oxidizing oxy-fuel burner stoichiometric equivalence ratio (oxygen/fuel) is maintained in the range of about 1.5 to about 12.5. The reducing air-fuel burner is fired at an equivalence ratio of 0.6 to 1.00 to reduce the availability of oxygen in the flame and reducing NOx emissions. The oxidizing flame from the oxy-fuel burner is oriented such that the oxidizing flame gas stream intersects the reducing air-fuel flame gas stream at or near the tail section of the air-fuel flame. The inventive methods improve furnace temperature control and thermal efficiency by eliminating some nitrogen and provide an effective burnout of CO and other hydrocarbons using the higher mixing ability of the oxidizing flame combustion products. The simultaneous air-fuel and oxy-fuel burner firing can reduce NOx emissions anywhere from 30% to 70% depending on the air-fuel burner stoichiometric ratio.
摘要:
A continuous glass-melting tank furnace includes a melting compartment including a melting tank having a lower part, and a superstructure equipped with heaters for receiving and melting raw batch material. Additionally included is a separate refining compartment including a refining tank and a superstructure equipped with a further heater, the refining tank having a lower part and including a transverse sill which divides the refining tank into an upstream refining cell and a downstream refining cell, each of the upstream refining cell and the downstream refining cell having respective upstream ends and downstream ends, and the further heater being arranged to heat melt in the upstream refining cell for creating a spring zone located closer to the downstream end of the upstream refining cell and a circulation of melt in the upstream refining cell which feeds the spring zone. A throat allowing communication between the lower parts of the melting tank and the refining tank, and a conditioning tank for receiving melt from the refining tank are also included.
摘要:
Burner firing method and device are presented where an oxidizing oxygen-fuel burner is fired at an angle to the reducing air-fuel burner flame to reduce overall NOx emissions from high temperature furnaces. The oxidizing oxy-fuel burner stoichiometric equivalence ratio (oxygen/fuel) is maintained in the range of about 1.5 to about 12.5. The reducing air-fuel burner is fired at an equivalence ratio of 0.6 to 1.00 to reduce the availability of oxygen in the flame and reducing NOx emissions. The oxidizing flame from the oxy-fuel burner is oriented such that the oxidizing flame gas stream intersects the reducing air-fuel flame gas stream at or near the tail section of the air-fuel flame. The inventive methods improve furnace temperature control and thermal efficiency by eliminating some nitrogen and provide an effective burnout of CO and other hydrocarbons using the higher mixing ability of the oxidizing flame combustion products. The simultaneous air-fuel and oxy-fuel burner firing can reduce NOx emissions anywhere from 30% to 70% depending on the air-fuel burner stoichiometric ratio.
摘要:
A method for manufacturing glass wherein raw material is fed as a batch to a continuous glass-melting tank furnace, melted in a melting tank and passed to a refining tank via a submerged throat. The melt is heated in the refining tank to de-gas it, and then molten refined glass is delivered to a conditioning tank where it is brought to a desired working temperature. The refining tank is divided into upstream and downstream refining cells by a transverse sill. The melt in the upstream refining cell is heated to create a spring zone located towards the downstream end of that cell and a circulation of melt in that cell which feeds the spring zone.