摘要:
A melting apparatus is disclosed, the melting apparatus including a melting vessel with a back wall, a front wall, a first side wall, a second side wall and a longitudinal centerline extending therebetween and a width between the first and second side walls orthogonal to the centerline. The melting vessel further includes a first feed screw including a first axis of rotation and a second feed screw including a second axis of rotation, the first axis of rotation positioned between the longitudinal centerline and the first side wall and the second axis of rotation positioned between the longitudinal centerline and the second side wall. The positions of either one or both the first and second axes of rotation are located from a respective side wall a distance that is equal to or less than about 15% of the width of the melting vessel.
摘要:
An electrically boosted refractory melting vessel including a back wall, a first side wall, a second side wall, a front wall and a bottom wall, the melting vessel comprising a longitudinal center line extending from the back wall to the front wall and an overall width orthogonal to the longitudinal center line extending between an inside surface of the first side wall and an inside surface of the second side wall. The melting vessel also includes a length L between the back wall and the front wall, and a width W between the first side wall and the second side wall orthogonal to the center line. A plurality of electrodes extend into an interior of the melting vessel through a bottom wall of the melting vessel, and L/W is in a range from about 2.0 to about 2.4.
摘要:
Methods and apparatus provide for: feeding glass batch material into a plasma containment vessel in such a way that the glass batch material is dispensed as a sheet of glass batch material particles; directing one or more sources of plasma gas into the inner volume of the plasma containment vessel in such a way that the plasma gas enters the plasma containment vessel as at least one sheet of plasma gas; and applying an alternating electric field to facilitate production of a plasma plume within the inner volume of the plasma containment vessel, where the plasma plume is of dimensions sufficient to envelope the sheet of glass batch material particles, and is of sufficient thermal energy to cause the glass batch material to react and melt thereby forming substantially homogeneous, spheroid-shaped glass intermediate particles.
摘要:
An energy-efficient device for refining a glass melt to produce a glass and/or a glass ceramic is provided. The device includes a refining crucible defined at least by lateral walls with a metallic lining as a melt contact surface, so that a melt refining volume is defined by a base surface, a top surface and a circumferential surface; at least one heating device that conductively heats the lining by an electric current in the lining, so that the melt is heated through the lining, the heating device and the lining are connected to one another by a feeding device. The feeding device establishes contact with the lining so that an electric current runs from the top surface to the base surface or from the base surface to the top surface, at least in sections of the lining.
摘要:
In the manufacturing of high melting point glasses with volatile components, in particular of glasses from the group of boron glasses and borosilicate glasses, a furnace is provided that has a superstructure, fossil fuel burners, and a melting tank. In front of a conditioning zone and a throat leading to an extraction zone, a step-shaped raised area in the bottom is provided which is formed continuously over the complete width of the melting tank. In order to suppress segregation or, respectively, phase separation, to protect the furnace construction materials and to enable problem-free operation, a temperature of at least 1600.degree. C. is produced in the superstructure by means of oxygen-rich oxidation gas, a raised area is provided in the form of a refining bank with a step in front of it, the step being at least 150 mm high and from which at least one row of booster electrodes projects upwards, before the step, the melt flows over at least one row of bubblers located in the bottom, and behind the step, the glass flows in a highly heated state over the refining bank for a distance of 800 mm to 2000 mm, the upper side of said bank being at a maximum distance "T" of 300 mm from the glass bath surface.
摘要:
A method for manufacturing glass wherein raw material is fed as a batch to a continuous glass-melting tank furnace, melted in a melting tank and passed to a refining tank via a submerged throat. The melt is heated in the refining tank to de-gas it, and then molten refined glass is delivered to a conditioning tank where it is brought to a desired working temperature. The refining tank is divided into upstream and downstream refining cells by a transverse sill. The melt in the upstream refining cell is heated to create a spring zone located towards the downstream end of that cell and a circulation of melt in that cell which feeds the spring zone.
摘要:
In a method of making glass or the like, wherein the batch materials are liquefied in a distinct zone from the refiner, the liquefied material is heated in an intermediate stage before being fed to the refiner. In preferred embodiments the intermediate stage comprises one or more channels extending from the side of the refiner.
摘要:
A method and apparatus for continuously melting and refining molten glass are disclosed which comprises the steps of applying a preponderance of heat to a molten glass mass by Joule effect heating and pulsating a portion of the heat applied to the molten glass mass such that the temperature of the surface molten glass is increased and the temperature of the molten glass being withdrawn is reduced and the total energy supplied to the furnace is reduced. An electric circuit means comprising at least two interconnected electrodes is pulsated on and off at predetermined time intervals in order to establish the desired temperature profile within the molten glass mass.
摘要:
An electric melting furnace is described for melting high electrical resistivity glass, such as E-glass, within a melting chamber surrounded by a relatively low electrically resistivity refractory, such as chromic oxide refractory, by utilizing interconnected peripherally positioned batch electrodes at substantially the same potential as the chromic oxide walls and centrally positioned electrodes which are immersed a greater distance than the batch electrodes. A quiescent zone is formed adjacent a lower portion of the melting chamber and the batch blanket and effective hydrostatic head of the molten bath are adjusted by controlling the immersion of the batch electrodes within the molten bath.