摘要:
Exemplary methods and apparatuses are disclosed that provide for determination of an atrio-ventricular delay on a beat-to-beat basis by determining a P-wave duration from electric signals corresponding to electric potentials in a heart, and determining the atrio-ventricular delay on a beat-to-beat basis such that the atrio-ventricular delay for an individual heart cycle depends on the P-wave duration of a same or an immediately preceding heart cycle.
摘要:
Techniques are provided for estimating defibrillation impedance of an implantable cardioverter/defibrillator (ICD). Briefly, at least two low-voltage resistance values are measured at different voltages using a pair of stimulation electrodes connected to the ICD. High-voltage defibrillation impedance is then estimated by the ICD based on a weighted combination of the measured resistance values. In one example, a set of weight coefficients, calculated during an initial calibration procedure, are applied to the measured resistance values to produce the estimate of the high-voltage defibrillation impedance. The weight coefficients are updated whenever a defibrillation shock is delivered, based on actual defibrillation impedance values measured during the shock.
摘要:
An output stage for use in a therapeutic defibrillator enables practical use of specialized output waveforms optimized for cardiac defibrillation. A pulse-width modulated (PWM) switching amplifier, connected to a high voltage source capacitor and to one or more output bridges corresponding to different electrode placements, is adapted to operate with high efficiency, demonstrated at about 80%. The amplifier is capable of delivering a defibrillating electric shock to a heart in the form of a time-varying output voltage waveform of arbitrary shape. Efficiency improvement is accomplished through the use of a high voltage reservoir capacitor network configured to minimize a voltage differential between the high voltage reservoir and the output voltage. The switching amplifier features both step-up and step-down amplifier capability. A PWM control unit is positioned within the circuit so as to reduce complexity by eliminating a need for additional isolation circuitry.
摘要:
An implantable medical lead for coupling to an implantable pulse generator may be configured for improved safety. The lead may include: a first electrode; a second electrode in electrical communication with the first electrode; and an active circuit element in electrical communication with the first electrode and the second electrode. The active circuit element may be configured to change an impedance of the lead. The active circuit element may be configured to change the impedance of the lead in response to a pacing signal or a signal having opposite polarity to a pacing signal. A method of using an implantable medical lead for improved safety may include changing an impedance of an implantable medical lead from a relatively high impedance to a relatively low impedance and/or changing an impedance of an implantable medical lead from a relatively low impedance to a relatively high impedance.
摘要:
Systems and methods are provided for reducing heating within pacing/sensing leads of a pacemaker or implantable cardioverter-defibrillator that occurs due to induced loop currents during a magnetic resonance imaging (MRI) procedure, or in the presence of other sources of strong radio frequency (RF) fields. For example, bipolar coaxial leads are described herein wherein the ring conductor of the lead is disconnected from the ring electrode in response to detection of MRI fields so as to convert the ring conductor into an RF shield for shielding the inner tip conductor of the lead so as to reduce the strength of loop currents induced therein and hence reduce tip heating. Techniques are also described herein for selectively disconnecting the tip electrode of the lead during an MRI procedure, except during actual delivery of pacing pulses, so as to permit delivery of individual pacing pulses to pacemaker dependent patients during the MRI. Still other techniques describe the use of both RF shielding and tip switching.
摘要:
An implantable cardiac stimulation device and method provides reliable sensing of cardiac events to support cardiac pacing or fibrillation detection. The device comprises a sensing circuit that senses the cardiac events in accordance with a plurality of threshold characterizing parameters. A parameter control adjusts the threshold parameters responsive to the rate of the sensed cardiac events in a manner which precludes positive feedback to prevent continued oversensing, undersensing, or noise sensing.
摘要:
A method for automatic threshold control and detection of lead failure in an implanted medical device obtains three sensing vectors for measurement of an electrocardiogram signal. A dynamic error signal is determined from the vectors, and may be used to set a detection threshold for insufficient ECG signals, and/or to passively monitor the device for indications of lead failure without performing an impedance measurement. Passive mode operation conserves battery power and enables continuous lead integrity checks. A quality factor may also be determined from the error signal, to indicate whether or not signal measurements are valid with respect to noise levels. If the detection threshold is allowed to decay between successive features of the electrocardiogram, the decay rate may be made adaptive such that it automatically adjusts to changes in heart rate or to changes in amplitude of the electrocardiogram features.
摘要:
A filtering scheme for an implantable medical device mitigates potentially adverse effects that may be caused by MRI-induced signals. In some aspects filtering is provided to attenuate MRI-induced signals on an implanted cardiac lead that is coupled to an implanted device. In some aspects the filter may be configured to complement a capacitor circuit (e.g., a feedthrough capacitor) that reduces the amount of EMI that enters the implanted device via the cardiac lead. In some implementations the filter consists of a LC tank circuit and a series LC circuit, where the LC tank circuit is in series with the cardiac lead and a cardiac stimulation circuit and the series LC circuit is in a shunt configuration across the cardiac stimulation circuit.
摘要:
Implantable electromedical device or loop recorders or ILRs that solve the problem of very low arrhythmia detection specificities in, i.e., high number of false positives, based on detection and analysis of external noise, specifically muscle noise surrounding the electromedical device. Embodiments generally employ active detection of lead or device movement that induces signal artifacts indicative of external noise. One or more embodiments may detect lead or device movement through use of a piezoelectric transducer, for example located proximally to the device or in the lead of the electromedical.
摘要:
An RF protection circuit mitigates potentially adverse effects that may otherwise result from electromagnetic interference (e.g., due to MRI scanning of a patient having an implanted medical device). The RF protection circuit may comprise a voltage divider that is deployed across a pair of cardiac electrodes that are coupled to internal circuitry of the implantable medical device. Each leg of the voltage divider may be referenced to a ground of the internal circuit, whereby the different legs are deployed in parallel across different circuits of the internal circuitry. In this way, when an EMI-induced (e.g., MRI-induced) signal appears across the cardiac electrodes, the voltages appearing across these circuits and the currents flowing through these circuits may be reduced. The RF protection circuit may be used in an implantable medical device that employs a relatively low capacitance feedthrough to reduce EMI-induced (e.g., MRI-induced) current flow in a cardiac lead.