Abstract:
Provided is a method for removing CO2 comprising: supplying a gas to be processed containing CO2, N2 and O2 to a feed side of a CO2/O2 selective permeation membrane within a temperature range of 15° C. to 50° C.; generating water vapor and supplying the water vapor to the CO2/O2 selective permeation membrane; selectively removing CO2 from the gas to be processed by permeating CO2 in the gas to be processed from the feed side to a permeate side of the CO2 selective permeation membrane selectively to O2 and N2 in the gas to be processed; and using a CO2 facilitated transport membrane having CO2/O2 selectivity and CO2/N2 selectivity within the temperature range as the CO2 selective permeation membrane, the CO2 facilitated transport membrane being configured with a hydrophilic polymer containing an amino acid and a deprotonating agent for preventing protonation of an amino group of the amino acid supported by a porous membrane, wherein a CO2 concentration in the gas to be processed is 3 mol % or less on a dry basis.
Abstract:
There are provided: a solid polymer power generation or electrolysis method that does not require injection of energy from the outside and maintenance of a high temperature, and is capable of converting carbon dioxide to a useful hydrocarbon while producing energy, controlling the production amounts of the hydrocarbons or the like and a ratio sorted by kind of the hydrocarbons, improving utilization efficiency of a product, and simplifying equipment for separation and recovery; and a system for implementing the solid polymer power generation or electrolysis method. Carbon dioxide is supplied to the side of one electrode 111 of a reactor 110 having a membrane electrode assembly 113, hydrogen is supplied to the side of the other electrode 112, and the amounts of the hydrocarbons produced per unit time and the ratio sorted by kind of the hydrocarbons are changed by controlling a power generation voltage of the reactor 110.
Abstract:
A gas-liquid separation device 1 that separates gas and liquid from a gas-liquid multiphase fluid comprises a hydrophobic enclosure for the multiphase fluid formed by a hydrophobic membrane that allows only the gas in the multiphase fluid to pass through, and a fluid flow channel 400 that supplies the multiphase fluid to the hydrophobic enclosure.
Abstract:
Provided are a water electrolysis method and a water electrolysis device in which mixing of the generated hydrogen and oxygen is greatly reduced and which have a high electrolysis efficiency, while being simplified in structure. In the water electrolysis method and water electrolysis device, water is electrolyzed by supplying water to the cathode side of an electrolytic membrane including a solid polymer membrane provided with a catalyst layer on a surface thereof and creating a potential difference between both surfaces of the electrolytic membrane. The temperature-controlled water is supplied only to the cathode side of the electrolytic membrane, while controlling the difference in pressure between both surfaces of the electrolytic membrane to 50 kPa or less.
Abstract:
There are provided: a solid polymer power generation or electrolysis method that does not require injection of energy from the outside and maintenance of a high temperature, and is capable of converting carbon dioxide to a useful hydrocarbon while producing energy, controlling the production amounts of the hydrocarbons or the like and a ratio sorted by kind of the hydrocarbons, improving utilization efficiency of a product, and simplifying equipment for separation and recovery; and a system for implementing the solid polymer power generation or electrolysis method. Carbon dioxide is supplied to the side of one electrode 111 of a reactor 110 having a membrane electrode assembly 113, hydrogen is supplied to the side of the other electrode 112, and the amounts of the hydrocarbons produced per unit time and the ratio sorted by kind of the hydrocarbons are changed by controlling a power generation voltage of the reactor 110.
Abstract:
Provided are a water electrolysis method and a water electrolysis device in which mixing of the generated hydrogen and oxygen is greatly reduced and which have a high electrolysis efficiency, while being simplified in structure. In the water electrolysis method and water electrolysis device, water is electrolyzed by supplying water to the cathode side of an electrolytic membrane including a solid polymer membrane provided with a catalyst layer on a surface thereof and creating a potential difference between both surfaces of the electrolytic membrane. The temperature-controlled water is supplied only to the cathode side of the electrolytic membrane, while controlling the difference in pressure between both surfaces of the electrolytic membrane to 50 kPa or less.