Abstract:
A network device may forward fragments of an IPv4 network packet to an IPv6 network without reassembling the IPv4 network packet. The network device may receive and buffer one or more fragments of a fragment flow associated with the IPv4 network packet until it receives a fragment of the fragment flow that includes an indication of the destination port of the IPv4 network packet. When the network device receives the fragment that includes the indication of the destination port of the IPv4 network packet, the network device may encapsulate each fragment of the fragment flow that it has received into respective IPv6 network packets to the IPv6 network.
Abstract:
In general, techniques are described for programming a set of one or more pre-defined rules within the forwarding plane of a packet gateway of a mobile service provider network and caching, within control plane, a group identifier that identifies the set of programmed, pre-defined rules. The control plane may match quality of service (QoS) information of incoming subscriber service requests with the group identifier and respective subsets of the set of programmed, pre-defined rules to rapidly associate service requests with already-programmed PCC rules and thereafter install, to the forwarding plane, subscriber service-specific actions for the PCC rules.
Abstract:
In general, techniques are described for offloading data transfer statistics from a mobile access gateway. The mobile access gateway comprises a forwarding unit. The forwarding unit comprises a packet forwarding engine (PFE). When the PFE receives a packet, the PFE updates a data transfer statistic based on a quantity of data in the packet. The data transfer statistic is initially stored in a memory of the PFE. The PFE is configured to push the data transfer statistic from the memory of the PFE to a memory of the forwarding unit.
Abstract:
In general, this disclosure describes techniques for applying, with a network device, subscriber-specific packet processing using an internal processing path that includes service objects that are commonly applied to multiple packet flows associated with multiple subscribers. In one example, a network device control plane creates subscriber records that include, for respective subscribers, one or more variable values that specify service objects as well as an identifier for a packet processing template. A forwarding plane of the network device receives and maps subscriber packets to an associated subscriber record and then processes the packet by executing the packet processing template specified by the subscriber record. When the forwarding plane reaches a variable while executing the specified packet processing template, the forwarding plane reads the associated variable value from the subscriber record to identify and then apply the subscriber-specific service object specified by the variable.
Abstract:
A network device may forward fragments of an IPv4 network packet to an IPv6 network without reassembling the IPv4 network packet. The network device may receive and buffer one or more fragments of a fragment flow associated with the IPv4 network packet until it receives a fragment of the fragment flow that includes an indication of the destination port of the IPv4 network packet. When the network device receives the fragment that includes the indication of the destination port of the IPv4 network packet, the network device may encapsulate each fragment of the fragment flow that it has received into respective IPv6 network packets to the IPv6 network.
Abstract:
In general, this disclosure describes techniques for applying, with a network device, subscriber-specific packet processing using an internal processing path that includes service objects that are commonly applied to multiple packet flows associated with multiple subscribers. In one example, a network device control plane creates subscriber records that include, for respective subscribers, one or more variable values that specify service objects as well as an identifier for a packet processing template. A forwarding plane of the network device receives and maps subscriber packets to an associated subscriber record and then processes the packet by executing the packet processing template specified by the subscriber record. When the forwarding plane reaches a variable while executing the specified packet processing template, the forwarding plane reads the associated variable value from the subscriber record to identify and then apply the subscriber-specific service object specified by the variable.
Abstract:
In general, techniques are described that facilitate scalable wholesale layer two (L2) connectivity between customers and service providers and a demarcation between the L2 wholesale network and one or more ISPs with which customers communicate L2 PDUs. In one example, a network device receives PDU having both a service identifier identifying a service virtual local area network (SVLAN) and a customer identifier identifying a customer VLAN (CVLAN). A virtual switch determines whether an entry of a L2 learning table is associated with both the service identifier and the customer identifier of the PDU. When no such entry exists, a VLAN learning module updates the L2 learning table to create a new entry that maps to a network device interface and is associated with both the service identifier of the PDU and a plurality of customer identifiers that includes the customer identifier of the PDU.
Abstract:
In general, techniques are described for maintaining load balancing after service application. A network device comprising ingress and egress forwarding components and a service card may implement the techniques. An ingress forwarding component receives a packet and, in response to a determination that the service is to be applied to the packet, updates the packet to include an ingress identifier that identifies the ingress forwarding component, thereafter transmitting the updated packet to the service card. The service card applies the service to the updated packet to generate a serviced packet and transmits the serviced packet to the ingress forwarding component identified by the ingress identifier so as to maintain load balancing of packet flows across the plurality of forwarding components. The ingress forwarding component determines a next hop to which to forward the serviced packet and the egress forwarding component forwards the serviced packet to the determined next hop.
Abstract:
In general, techniques are described for maintaining load balancing after service application. A network device comprising ingress and egress forwarding components and a service card may implement the techniques. An ingress forwarding component receives a packet and, in response to a determination that the service is to be applied to the packet, updates the packet to include an ingress identifier that identifies the ingress forwarding component, thereafter transmitting the updated packet to the service card. The service card applies the service to the updated packet to generate a serviced packet and transmits the serviced packet to the ingress forwarding component identified by the ingress identifier so as to maintain load balancing of packet flows across the plurality of forwarding components. The ingress forwarding component determines a next hop to which to forward the serviced packet and the egress forwarding component forwards the serviced packet to the determined next hop.