摘要:
A bevel inspection module for capturing images of a substrate is provided. The module includes a rotational motor, which is attached to a substrate chuck and is configured to rotate the substrate chuck thereby allowing the substrate to revolve. The module further includes a camera and an optic enclosure, which is attached to the camera and is configured to rotate, enabling light to be directed toward the substrate. The camera is mounted from a camera mount, which is configured to enable the camera to rotate on a 180 degree plane allowing the camera to capture images of at least one of a top view, a bottom view, and a side view of the substrate. The module yet also includes a backlight arrangement, which is configured to provide illumination to the substrate, thereby enabling the camera to capture the images, which shows contrast between the substrate and a background.
摘要:
A bevel inspection module for capturing images of a substrate is provided. The module includes a rotational motor, which is attached to a substrate chuck and is configured to rotate the substrate chuck thereby allowing the substrate to revolve. The module further includes a camera and an optic enclosure, which is attached to the camera and is configured to rotate, enabling light to be directed toward the substrate. The camera is mounted from a camera mount, which is configured to enable the camera to rotate on a 180 degree plane allowing the camera to capture images of at least one of a top view, a bottom view, and a side view of the substrate. The module yet also includes a backlight arrangement, which is configured to provide illumination to the substrate, thereby enabling the camera to capture the images, which shows contrast between the substrate and a background.
摘要:
A method for calculating a process center for a chuck in a processing chamber is provided. The method includes generating pre-processing and post-processing measurement data points, which is perform by measuring thickness of a film substrate at a set of orientations and a set of distances from a geometric center of the substrate. The method also includes comparing the pre-processing and post-processing measurement data points to calculate a set of etch depth numbers. The method further includes generating etch profiles for the set of orientations. The method yet also includes extrapolating a set of radiuses, which is associated with a first etch depth, from the etch profiles. The method yet further includes generating an off-centered plot, which is a graphical representation of the set of radiuses versus the set of orientations. The method more over includes calculating the process center by applying a curve-fitting equation to the off-centered plot.
摘要:
A method for calculating a process center for a chuck in a processing chamber is provided. The method includes generating pre-processing and post-processing measurement data points, which is perform by measuring thickness of a film substrate at a set of orientations and a set of distances from a geometric center of the substrate. The method also includes comparing the pre-processing and post-processing measurement data points to calculate a set of etch depth numbers. The method further includes generating etch profiles for the set of orientations. The method yet also includes extrapolating a set of radiuses, which is associated with a first etch depth, from the etch profiles. The method yet further includes generating an off-centered plot, which is a graphical representation of the set of radiuses versus the set of orientations. The method more over includes calculating the process center by applying a curve-fitting equation to the off-centered plot.
摘要:
A method for aligning a substrate to a process center of a support mechanism is provided. The method includes determining substrate thickness after substrate processing at a plurality of orientations and at a plurality of radial distances from a geometric center of the substrate. The method also includes deriving a set of process rate values from substrate thickness and process duration. The method further includes creating for a process rate an off-centered plot which represents a substantially concentric circle whose points are a circumference of the off-centered plot having substantially the first process rate. The method yet also includes applying a curve-fitting equation to the off-centered plot to determine a set of parameters. The method yet further includes teaching a set of robot arms the set of parameters, thereby enabling the set of robot arms to align another substrate that is supported by the support mechanism with the process center.