摘要:
A conjugate is provided for cell processing, which comprises a magnetic particle and a surface modifier having specific affinity to a target cell. The particle and modifier are linked through a cleavable peptide bond. In a method of cell processing, the conjugate is attached to a target cell; the target cell attached to the conjugate is subject to magnetic processing; the peptide bond is cleaved to separate the processed target cell from the magnetic particle; the target cell separated from the magnetic particle is attached to a substrate. The magnetic particle may include an iron oxide, and the surface modifier may include a glucosamine. The particle and modifier may be linked by a linker comprising a protease recognition site and a peptide bond. The linker links the surface modifier to the particle, and cleavage of the peptide bond is catalyzed by a specific protease that recognizes the protease recognition site.
摘要:
The present invention relates to nanocrystals and methods for making the same; in particular, the invention relates to ternary or higher alloyed nanocrystals and methods for making such structures in aqueous or water-soluble solvents. In certain embodiments of the invention, methods of preparing ternary or higher alloyed nanocrystals involve providing at least first, second, and third nanocrystal precursors (e.g., NaHSe, ZnCl2, and CdCl2) and forming nanocrystal structures in an aqueous or water-soluble solvent. In some cases, nanocrystal precursor solutions may also include a water-soluble ligand (e.g., glutathione, GSH). As such, ternary or higher alloyed nanocrystals (e.g., ZnxCd)—xSe) comprising the at least first, second, and third nanocrystal precursors may be formed, and the water-soluble ligand may coat at least a portion of the surface of the ternary or higher alloyed nanocrystal. Advantageously, methods for forming nanocrystals described herein can be performed at low temperatures (e.g., less than 100 degrees Celsius), and, in some embodiments, do not require the use of organic solvents. The present inventors have applied these methods to prepare blue-emitting nanocrystals with emissions that are tunable between 400-500 nm, and with quantum yields of greater than 25% in aqueous solution. These nanocrystals may be highly water soluble and can be used in a variety of applications, including those involving cell culture, sensing applications, fluorescence resonance energy transfer, and in light-emitting devices.
摘要翻译:本发明涉及纳米晶体及其制造方法。 特别地,本发明涉及三元或更高合金化的纳米晶体和在水溶性或水溶性溶剂中制备这种结构的方法。 在本发明的某些实施方案中,制备三元或更高合金化纳米晶体的方法包括提供至少第一,第二和第三纳米晶体前体(例如NaHSe,ZnCl 2和CdCl 2)并在水溶性或水溶性溶剂中形成纳米晶体结构。 在一些情况下,纳米晶体前体溶液还可以包括水溶性配体(例如谷胱甘肽,GSH)。 因此,可以形成包含至少第一,第二和第三纳米晶体前体的三元或更高的合金化纳米晶体(例如,Zn x C d)-x Se),并且水溶性配体可以涂覆三元体表面的至少一部分 或更高的合金化纳米晶体。 有利地,本文所述的形成纳米晶体的方法可以在低温(例如,低于100摄氏度)下进行,并且在一些实施方案中不需要使用有机溶剂。 本发明人已经应用这些方法来制备具有在400-500nm之间可调谐的发射的蓝色发射纳米晶体,并且在水溶液中具有大于25%的量子产率。 这些纳米晶体可以是高度水溶性的,并且可以用于各种应用,包括涉及细胞培养,感测应用,荧光共振能量转移以及发光器件的应用。
摘要:
The invention provides a process for the preparation of a surface-functionalized nanoparticle comprising: (a) reacting a nanoparticle with a functionalized silane and a base in a substantially non-aqueous solvent to obtain a partially conjugated silanated nanoparticle, wherein the functionalized silane and the base are present in relative amounts such that said functionalized silane undergoes substantially only a single hydrolysis reaction; (b) reacting the partially conjugated silanated nanoparticle formed in step (a) with a base in a solvent in which the partially conjugated silanated nanoparticle is substantially insoluble and in which the base is substantially soluble. The invention also provides a surface-functionalized nanoparticle prepared therefrom and a bioconjugate comprising said a surface-functionalized nanoparticle.
摘要:
In a process of forming a capped crystal structure, a precursor solution is heated. The solution comprises a mixture of zinc (Zn) precursor, selenium (Se) precursor, precursor for a dopant, glutathione (GSH), and water. The dopant comprises a transition metal (M). The molar ratio of Zn:Se in the solution may be about 10:3 to about 10:5. The solution is heated for a first period sufficient to allow Zn(M)Se crystal core to form. After the first period of heating, more zinc precursor and GSH are added to the heated solution, and the solution is heated for a second period sufficient to form ZnS crystal shell on the Zn(M)Se crystal core. GSH is added in a sufficient amount to form a GSH layer around the Zn(M)Se/ZnS quantum dot.
摘要:
Quantum dots, each having a core comprising CdTe and a shell comprising GSH covering the core, are provided. The Quantum dots can be formed in a solution comprising a telluride (Te) precursor and a cadmium (Cd) precursor for forming the cores, and glutathione (GSH) for forming shells covering the cores. The cores can comprise CdTe nanocrystals grown in the solution. The growth of the nanocrystals can be limited. The quantum dots can have high fluorescence emission quantum yield such as up to about 45%, and small sizes such as from about 3.8 nm to about 6 nm.
摘要:
The invention relates generally to gold nanoclusters, and in particular, fluorescent gold nanoclusters. The gold nanoclusters may be stabilized, for example, with a protein or stabilizing agent. In some cases, the gold nanoclusters may be used in methods or articles to determine the presence, absence, and/or concentration of mercuric ions in a sample.
摘要:
The invention provides a process for the preparation of a surface-functionalized nanoparticle comprising: (a) reacting a nanoparticle with a functionalized silane and a base in a substantially non-aqueous solvent to obtain a partially conjugated silanated nanoparticle, wherein the functionalized silane and the base are present in relative amounts such that said functionalized silane undergoes substantially only a single hydrolysis reaction; (b) reacting the partially conjugated silanated nanoparticle formed in step (a) with a base in a solvent in which the partially conjugated silanated nanoparticle is substantially insoluble and in which the base is substantially soluble. The invention also provides a surface-functionalized nanoparticle prepared therefrom and a bioconjugate comprising said a surface-functionalized nanoparticle.