摘要:
There is provided a method for allocating subframes in a radio communications system that performs communication by using a radio frame including a plurality of subframes, the method including: selecting a backhaul downlink subframe in which a base station is to transmit a signal to a relay station; and allocating the backhaul downlink subframe to a substitution subframe which is not limitation subframes, when the selected backhaul downlink subframe corresponds to one of the limitation subframes, wherein the limitation subframes are subframes in which the relay station is to transmit essential information to a relay user equipment. Therefore, it is possible to overcome a limitation that is present in a link between the base station and the relay station, perform an HARQ operation, and improve the efficiency of radio resource allocation.
摘要:
A method of allocating a radio resource for a relay station in a wireless communication system is disclosed. The method comprise allocating a relay zone to the relay station in a subframe and transmitting a relay control channel to the relay station by using the relay zone, wherein the subframe comprises a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and a plurality of subcarriers in a frequency domain, wherein the subframe is divided into a user zone used by a user equipment in a cell and the relay zone used by the relay station, and wherein the relay zone comprises some of the plurality of subcarriers. According to the present invention, a subframe structure provides backward compatibility with a legacy wireless communication system. A relay station can effectively find a radio resource allocated to the relay station, thereby decreasing a decoding time.
摘要:
A method of allocating a radio resource for a relay station in a wireless communication system is disclosed. The method comprise allocating a relay zone to the relay station in a subframe and transmitting a relay control channel to the relay station by using the relay zone, wherein the subframe comprises a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and a plurality of subcarriers in a frequency domain, wherein the subframe is divided into a user zone used by a user equipment in a cell and the relay zone used by the relay station, and wherein the relay zone comprises some of the plurality of subcarriers. According to the present invention, a subframe structure provides backward compatibility with a legacy wireless communication system. A relay station can effectively find a radio resource allocated to the relay station, thereby decreasing a decoding time.
摘要:
The method for wireless resource subframe allocation comprises the following steps: allocation of the control channel based on the first RAT (Radio Access Technology) of the first control domain, which includes the OFDM symbol of the first number from the sub-frame containing multiple OFDM symbols and multiple subcarriers in the frequency domain; allocation of the control channel based on the second RAT of the second control domain including the OFDM symbol of the second number which follows said first control domain; and the allocation of a data channel in the data domain which includes the OFDM symbols positioned outside said first control domain and second control domain. This invention provides a sub-frame structure which is compatible with existing wireless communication systems. This method allows the continued use of existing control channel systems or base signal structures. The method is also capable of supporting advanced features.
摘要:
The method for wireless resource subframe allocation comprises the following steps: allocation of the control channel based on the first RAT (Radio Access Technology) of the first control domain, which includes the OFDM symbol of the first number from the sub-frame containing multiple OFDM symbols and multiple subcarriers in the frequency domain; allocation of the control channel based on the second RAT of the second control domain including the OFDM symbol of the second number which follows said first control domain; and the allocation of a data channel in the data domain which includes the OFDM symbols positioned outside said first control domain and second control domain. This invention provides a sub-frame structure which is compatible with existing wireless communication systems. This method allows the continued use of existing control channel systems or base signal structures. The method is also capable of supporting advanced features.
摘要:
There is provided a method for allocating subframes in a radio communications system that performs communication by using a radio frame including a plurality of subframes, the method including: selecting a backhaul downlink subframe in which a base station is to transmit a signal to a relay station; and allocating the backhaul downlink subframe to a substitution subframe which is not limitation subframes, when the selected backhaul downlink subframe corresponds to one of the limitation subframes, wherein the limitation subframes are subframes in which the relay station is to transmit essential information to a relay user equipment. Therefore, it is possible to overcome a limitation that is present in a link between the base station and the relay station, perform an HARQ operation, and improve the efficiency of radio resource allocation.
摘要:
Disclosed in a method whereby a terminal sends an uplink control signal on a wireless communication system. More specifically, the present invention comprises the steps of generating an uplink control signal, allocating uplink sending resources to the uplink control signal, and sending the uplink control signal to a base station; a time resource in the uplink transmission resources is divided into sub-frame units divided into two slots; at least one of the two slots comprises one reference symbol for transmitting a reference signal; and in the slot comprising the one reference symbol, at least one of a plurality of data symbols for transmitting data signals is dropped.
摘要:
A method of performing hybrid automatic repeat request (HARQ) by a source station in a wireless communication system is provided. The method includes: transmitting data to a destination station at a transmission start time; receiving an acknowledgment (ACK) or negative-acknowledgement (NACK) signal for the data from the destination station after a first transmission time interval elapses from the transmission start time; and upon receiving the NACK signal, retransmitting the data after a second transmission time interval elapses from the transmission start time, wherein the second transmission time interval is one transmission time interval selected from a plurality of predetermined transmission time intervals. Accordingly, the wireless communication system can perform a heterogeneous HARQ process in which an HARQ period, an ACK/NACK transmission start time, and the like are different.
摘要:
Disclosed in a method whereby a terminal sends an uplink control signal on a wireless communication system. More specifically, the present invention comprises the steps of generating an uplink control signal, allocating uplink sending resources to the uplink control signal, and sending the uplink control signal to a base station; a time resource in the uplink transmission resources is divided into sub-frame units divided into two slots; at least one of the two slots comprises one reference symbol for transmitting a reference signal; and in the slot comprising the one reference symbol, at least one of a plurality of data symbols for transmitting data signals is dropped.
摘要:
A method of performing hybrid automatic repeat request (HARQ) by a source station in a wireless communication system is provided. The method includes: transmitting data to a destination station at a transmission start time; receiving an acknowledgment (ACK) or negative-acknowledgement (NACK) signal for the data from the destination station after a first transmission time interval elapses from the transmission start time; and upon receiving the NACK signal, retransmitting the data after a second transmission time interval elapses from the transmission start time, wherein the second transmission time interval is one transmission time interval selected from a plurality of predetermined transmission time intervals. Accordingly, the wireless communication system can perform a heterogeneous HARQ process in which an HARQ period, an ACK/NACK transmission start time, and the like are different.